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Boosting bit rates in non-invasive EEG single-trial
classifications by feature combination and

multi-class paradigms
Guido Dornhege, Benjamin Blankertz, Gabriel Curio, Klaus-Robert Müller

Abstract— Non-invasive EEG recordings provide for easy and
safe access to human neocortical processes which can be exploited
for a Brain-Computer Interface (BCI). At present, however,
the use of BCIs is severely limited by low bit-transfer rates.
Here, we systematically analyze and furthermore develop two
recent concepts, both capable of enhancing the information gain
from multichannel scalp EEG recordings: (1) the combination
of classifiers each specifically tailored for different physiologi-
cal phenomena, e.g. slow cortical potential shifts, such as the
pre-movement Bereitschaftspotential, or differences in spatio-
spectral distributions of brain activity (i.e. focal event-related
desynchronizations), and (2) behavioral paradigms inducing the
subjects to generate one out of several brain states (multi-
class approach) which all bare a distinctive spatio-temporal
signature well discriminable in the standard scalp EEG. We
derive information-theoretic predictions and demonstrate their
relevance in experimental data. We will show in particular
that a suitably arranged interaction between these concepts can
significantly boost BCI performances.

Index Terms— EEG, Event-Related Desynchronization, Move-
ment Related Potential, Brain-Computer Interface, Common
Spatial Patterns, Multi-class, Feature Combination, Single-Trial-
Analysis

I. INTRODUCTION

The ultimate goal of brain-computer interfacing (BCI) is
to translate intentions of a subject into a control signal for
a device, say a computer application, a wheelchair or a
neuroprosthesis (e.g. [1]). Recent years have seen continuous
progress in both invasive (e.g. [2], [3], [4]) and non-invasive
BCI technology (e.g. [1], [5], [6], [7]). In this paper we
will focus on non-invasive electroencephalogram (EEG) based
brain computer interfacing which have the appeal of both: easy
application and absence of procedural risks, such as infection
or cortical micro-lesions, but still suffer from low bit transfer
rates.

It is known that EEG signals under appropriate well-
designed experimental paradigms allow a subject to convey
her/his intentions by, for example, motor imagery or execution
of specific mental tasks. Once the intentions have manifested
themselves in brain activity and have been measured by EEG,
the scene is set for advanced signal processing and machine
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learning technology. First, appropriate feature vectors need to
be extracted from the digitized EEG-signals. To produce a
control signal for a device, say, left vs. right, these feature
vectors are then translated either (1) by threshold criteria or
simple equations (with only a few parameters to be estimated
on some training data) or (2) by more complex decision
functions that are learned on the training data by machine
learning techniques like linear discriminant analysis (LDA),
support vector machines (SVMs) or artificial neural networks
(ANNs).

It is very helpful for classification if the EEG-feature
vectors are extracted such that they hold the most discrim-
inative information for a chosen paradigm. It is here where
neurophysiological a-priori knowledge can be very beneficial
(e.g. [5], [8]). For some behavorial paradigms it is well-known
that several distinct – possibly independent – physiological
processes play an important role. Several authors, for example
in [9], [10] point out the potential gain in using all such
features, however investigations of feature combinings were
announced, but so far not covered in publications. In our
recent work [8], we showed some initial highly promising
steps in this direction that have the potential to increase BCI
performance enormously.

Our present paper will thus provide an extensive investi-
gation on methods for combining features and confirm their
value in an experimental BCI context. We contribute by
providing theoretical insights on the expected performance
gain when using a combination method. The presented results
hold under the assumption of a certain base performance on
the single feature vector and the level of independence. A
special focus is placed on the question of how to incorporate
a-priori knowledge about feature independence. Furthermore,
we discuss feature combination in the context of multi-class
BCI systems. In this context some multi-class extensions of
the well-known Common Spatial Pattern (CSP) algorithm
(cf. [11]) are proposed and evaluated. Finally we will show
that both, i.e. feature combination and multi-class extensions,
together hugely increase the performance of the BCI system.

The present study considers solely an offline analysis of
our BCI experiments. Note, however, that an offline scenario
is the most stable and preferable when testing for substantial
classification improvements when comparing the new combi-
nation and multi-class methods with single feature analysis,
cf. discussion in [12]. Since all features are present in all
movement intentions or imagined movements, we also expect
high performance gains in online BCI experiments.
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The rest of the paper proceeds as follows: we will first
provide a short overview of the necessary neurophysiological
background (Section II), then clarify some important theoret-
ical aspects of feature combination (Section III) and multi-
class learning (Section IV). Subsequently we focus on new
combination methods in Section V, in particular multi-class
algorithms for CSP, i.e. describe the classification and signal
processing techniques used in the experiments. A description
of results, comparisons to possible theoretical gain under
assumption of feature independence and a discussion follow
in sections VI and VII respectively.

II. NEUROPHYSIOLOGICAL BACKGROUND

Combination. Significant gain can be expected from a
combination of several single features if these single features
provide complementary information for the classification task.
In case of sensorimotor cortical processes accompanying finger
movements Babiloni et al. [13] demonstrated that movement
related potentials (MRPs) and event-related desynchroniza-
tions (ERD), i.e. an amplitude decrease of the pericentral µ-
and β -rhythms, indeed show up with different spatio-temporal
activation patterns across primary (sensori-)motor cortex (M-
1), supplementary motor area (SMA) and the posterior parietal
cortex (PP). This finding is backed by invasive (subdural)
EEG recordings [14] during brisk, self-paced finger and foot
movements: MRPs started over widely distributed areas of the
sensorimotor cortices (Bereitschaftspotential) and focused at
the contralateral M-1 hand cortex with a steep negative slope
prior to finger movement onset, culminating in a negative peak
approximately 100 ms after EMG onset. In contrast, a bilateral
M-1 ERD preceding the movement appeared to reflect a more
widespread cortical ‘alerting’ function. Most importantly, the
ERD response magnitude did not correlate with the amplitude
of the negative MRPs slope. Note that these studies analyze
preparation and actual execution of real movements. We
presume a similar existence and independence of MRP (cf.
[15]) and ERD phenomena for imagined movements, as is
confirmed in Section VI. We also use the term ‘Movement
Related Potentials’ for imagined of movements here.

Apart from exploiting complementary information on cor-
tical processes, combining features based on MRP and ERD
can provide the additional benefit of better robustness against
artifacts originating from outside the central nervous system
(CNS), such as eye movements (measured with EOG) or
muscular artifacts (EMG). While EOG activity mainly affects
slow potentials, i.e. MRPs, EMG activity is detrimental to
oscillatory features, i.e. ERD, cf. [1]. Accordingly, a classi-
fication method based on both features could be construed
to appropriately handle trials that are contaminated by either
one of these artifacts. Yet the risk of using non-CNS activity
for classification, which would not be conform with the basic
BCI criteria [1], must nonetheless be addressed explicitly (cf.
Section V-C).
Multi-class. It is an open question how many brain states
could and should be used to implement a BCI. Using more
than the two classes, as are involved in the usual binary
decision tasks, requires that a suitable number of well discrim-
inable brain-states can be identified. Obermaier et al. ([16])

report initial results showing the use of three classes yields
improved BCI results. Before we analyze new algorithms to
increase the information transfer rate (ITR) by extending BCI
to multi-class paradigms, two psychological aspects shall be
addressed: In principle, multi-class decisions should be derived
from a decision space natural to human subjects. In a BCI
context such decisions will be performed more ‘intuitively’,
i.e. without a need for prolonged training, if the differential
brain states are naturally related to a set of intended actions.
This is the case, for example, for movements of different
body parts which have a somatotopically ordered lay-out in
the primary motor cortex resulting in spatially discriminable
patterns of EEG signals, such as MRPs and ERDs specific for
finger, elbow or shoulder movement commands. Notably, also
non-motor spatially discriminable patterns of EEG signals can
be induced by either auditory or visual imagery, for example
when imagining a tune to move a cursor upwards vs. imaging
a visual scene to induce a downward movement. However, this
kind of contingency between ‘brain action’ and ‘world effect’
would be counter-intuitive. While humans are able to adapt and
to learn such complex tasks, this could take weeks of training
before it could be performed fast, quickly and ‘automatically’.
Another critical aspect of multi-class paradigms would arise
if these classes could be identified only at the expense of
lower accuracy which is likely to confuse the user in an online
feedback setting.

III. COMBINING CLASSIFIERS: THEORETICAL ASPECTS

Although the following calculations are easy and similar
results (in other context) can be found in the literature, we
demonstrate them here to highlight the theoretical reasons for
using feature combination. We start with a set of N feature
vectors described by random variables X j with binary labels
Y ∈{±1} for j ∈ {1, ...,N}. Let us further assume that for each
feature an optimal classifier, i.e. with minimal misclassification
risk, f j :

� d j → �
can be found, where P( f j(X j)|Y = ±1) =

N (µ j,±1,σ2
j,±1) and d j is the dimension of the feature vector

X j. This is always the case if the feature vectors are Gaussian
distributed with equal covariances under use of the optimal
Bayes classifier LDA. In this case we additionally get σ 2

j =

σ2
j,±1 and furthermore for equal class priors1 µ j = ±µ j,±1.

The expected misclassification risk c j of the feature vectors
X j is then one-to-one related to the quotient µ j/σ j. In more
detail if we define g(z) := 1√

2π

∫ 0
−∞ exp(− (x−z)2

2 )dx2 , we get
c j = g(µ j/σ j). Although the following simple strategy is not
necessarily optimal, it is sufficient to get a lower bound for the
increase in performance by using more feature vectors. We de-
fine the combined classifier for a collection of feature vectors
x = (x1, . . . ,xN) by the sign of the function ∑N

j=1 f j(x j)/σ j,
i.e. we normalize each single classifier to have variance 1
on each class and sum them up. If the feature vectors are
independent, we know that the sum of Gaussian distributions
are again Gaussian distributed with mean (or variances) equal
to the sum of the means (or variance) of all feature vectors.
Consequently our constructed classifier is Gaussian distributed

1i.e. P(Y = 1) = P(Y = −1) = 0.5
2‘:=’ means ‘defined as’
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Fig. 1. In the figure the expected misclassification risk in % for combination
of N different feature vectors are confronted to the single expected misclassi-
fication risk (assumption: all single feature vectors have the same performance
and are mutually independent and Gaussian distributed).

with mean µ := ∑N
j=1 µ j/σ j and σ 2 := N, if we assume

independence. Then the expected misclassification risk c of
this combined problem is

c = g(µ/
√

N) = g

(

∑N
j=1 g−1(c j)√

N

)

. (1)

If all feature vectors have the same misclassification risk ĉ we
find the well-known rule for the signal-to-noise-ratio increase
of the mean of N independent identical distributed Gaussian
distribution of

√
N (cf. [17]), namely that the combined

problem has a misclassification risk c = g(
√

Ng−1(ĉ)) < ĉ,
since g is strictly monotonically decreasing. This result is
shown in Fig. 1 for different numbers of feature vectors N
and reveals a large gain of a combination strategy under this
assumptions, e.g. combining 5 independent feature vectors
with an error rate of 20 % each leads to an overall error
of 3 %! Equation (1) in its general form, i.e. with different
c j’s, is used in Section VI to compare the actual performance
of the proposed feature combiners with performance (1) that
could theoretically be obtained when features are perfectly
independent.

IV. MULTI-CLASS PARADIGMS: THEORETICAL ASPECTS

Our aim is to find a subset out of many possible brain
states (classes) which is most profitable for the use as control
paradigm in a BCI system. Here we investigate this issue in
general from a pure information theoretic perspective. Using
more classes has the potential to increase ITR, although the
classification performance decreases. For subsequent theoret-
ical considerations we assume Gaussian distributions with
equal covariance matrices for all classes, which is a reasonable
assumption for a wide range of EEG features. Furthermore
we assume equal class priors, this means that all classes are
expected to be used the same number of times, which is
typical for many BCI applications. For three classes and pair-
wise equal classifications errors err, bounds for the expected
classification error can be calculated in the following way:
Let (X ,Y ) ∈ � n ×Y (Y = {1,2,3}) be random variables
with P(Y = i) = 1/3 (equal class priors) and P(X |Y = i) =
N (µi,Σ) for i = 1,2,3. Scaling appropriately, we can assume
Σ = I. We define the optimal classifier by f ∗ :

� n → Y

with f ∗ = argmin f∈FP( f (X) 6= Y ), where F is some class

of functions3. Similarly f ∗i, j describes the optimal classifier
between classes i and j. We directly get err := P( f ∗i, j(X) 6=
Y ) = g(||(µi −µ j)/2||2) for i 6= j with g as defined in the last
section. Therefore we get ||µ j − µi||2 = Φ(err) for all i 6= j
with some Φ(err) > 0 and finally due to symmetry and equal
class priors P( f ∗(X) 6= Y ) = Q(||X ||2 ≥ min j=2,3(||X − µ j +
µ1||2/2)) where Q = N (0, I). Since evaluation of probabilities
for polyhedrons in the Gaussian space is difficult, we only
estimate lower and upper bounds. We can directly reduce the
problem to a 2 dimensional space with µ1 = 0 by shifting,
rotating and by Fubini’s theorem. Since ||µ j −µi||2 = Φ for all
i 6= j the means lie at the corners of an equilateral triangle.
With arg :

� 2 → [−π ,π), arg(x) = φ , if x = reiφ in the
unique polar coordinates representation, we define the sets (see
Fig. 2):

A := {x ∈ � 2 |µ>
3 x > Φ2/2∧arg(x) > π/3}

B := {x ∈ � 2 |µ>
2 x > Φ2/2∧arg(x) < 0}

Cl := {x ∈ � 2 | ||x||2 > Φ/
√

3∧arg(x) ∈ [0,π/3]}
Cu := {x ∈ � 2 | ||x||2 > Φ/2∧arg(x) ∈ [0,π/3]}
R := {x ∈ � 2 | ||x||2 ≥ ||x−µ j||2, j = 2,3}

We directly see that A∪B∪Cl ⊂R⊂A∪B∪Cu. Due to symme-
try, the equilateral triangle, polar coordinates transformation,
some integral calculations and P(R) = P( f ∗(X) 6=Y ) we finally
get

exp(−Φ(err)2/6)

6
≤ P( f ∗(X) 6=Y)−err ≤ exp(−Φ(err)2/8)

6
.

(2)
To compare classification performances involving different
numbers of classes, we use the ITR quantified as bit rate per
decision I as defined due to Shannon’s theorem: I := log2 N +
p log2 p+(1− p) log2((1− p)/(N−1)) with number of classes
N and classification accuracy p (cf. [18]). Fig. 2 (right) shows
these bounds (”3 range”) for the ITR as a function of the
expected pairwise misclassification errors. Note that less strict
assumptions for the problem, like having more classes, make
calculation of such bounds much harder. Here the results of
such situations were obtained by simulation. We therefore
visualize values on simulated data (100000 data points for
each class) in the same figure, under the assumptions described
above for N = 2, ...,6 classes. While, the figure confirms
our estimated bounds, it also shows that under these strict
assumptions multi-class BCI yields significant gain in ITR.
However, the biggest insight of this figure is that the gain of
using more than 4 classes is small if the pairwise classification
error is about 10 % or more. Under more realistic assumptions,
i.e. more classes have increasing pairwise classification error
compared to a sensibly chosen subset, it is improbable that
increasing the number of classes to more than four will
increase the bit rate. However, this depends strongly on the
respective pairwise errors. If a suitable number of different
brain states can be discriminated well, then extensions to more
classes are indeed useful.

3For the moment we pay no attention to whether such a function exists. In
the current setup F is usually the space of all linear classifiers, and under the
probability assumptions mentioned above such a minimum exist.
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Fig. 2. The figure on the left visualizes a method to estimate bounds for
the ITR depending on the expected pairwise misclassification risk (P(R)) for
three classes. The figure on the right shows the ITR depending on the expected
classification error [%] for simulated data for different number of classes (3-6
sim) and for 2 classes the real values (2 calc). Additionally the expected range
(see equation (2)) (3 range) for three classes is visualized.

V. DATA ACQUISITION AND FEATURE EXTRACTION

A. Experiments

We recorded brain activity from 10 healthy subjects (codes
aa, ac af, ah, ak, ar, as, av, aw and ay) in 15 different
experiments with multi-channel EEG amplifiers using 64
or 128 channels band-pass filtered between 0.05 and 200 Hz
and sampled at 1000 Hz. For offline analysis all signals were
down-sampled to 100 Hz. Surface EMG at both forearms and
one leg, as well as horizontal and vertical EOG signals, were
recorded to check for muscle activation and eye movements,
but no trial was rejected.

The subjects in this experiment sat in a comfortable chair
with their arms relaxed on arm-rests. All 4.5 seconds one of
2, 3 or 6 different letters appeared on a computer screen for
3 seconds. During this period the subject had to do one of
6 different things according to the displayed letter: imagined
movement of left or right hand or foot, or imagination of a
visual (with eyes open), auditory or tactile sensation. Only
subjects af, ak and as used all 6 classes. One experiment
was done with the 4 classes l,r, f and v with subject aw.
Six experiments were conducted with the 3 classes l, r and
f and subjects aa, af, ar, av, aw and ay and two with the 3
classes f, a and v with subjects ac and ah. Finally, subjects
aa, ac and ah also took part in an experiment with the two
classes l and r. For each class 160–200 trials were recorded.

The aim of classification in these experiments is to dis-
criminate trials of different classes using the whole period of
imagination. A further reasonable objective, i.e. to detect a
new brain state as early as possible, was not an object of this
particular study. Note that the classes v and a were included
only to study single-trial EEG classification while those mental
tasks are not intended for the use in our BCI system. The
tasks were chosen because their cortical activation patterns
can be well differentiated at a macroscopic scale of several
centimeters so that both slow cortical potentials and oscillatory
effects should be expected to be discriminable in principle.

B. Classification and Validation

Although a wide range of classifiers are available, we typ-
ically use Linear Discriminant Analysis (LDA) in the context
of the BCI feature vectors to be presented in Section V-C.
The reason for this is the concept to using ‘simple methods

first’ and the fact that in our BCI studies linear classification
methods were rarely found to perform worse than non-linear
classifiers (cf. also [19], [20]). Furthermore the assumption of
Gaussian distributions with equal covariance matrices holds
well for the SUB feature vectors described later (cf. [21]).
It was an interesting outcome of the BCI Competition 2003
([12]) that on all 5 different kinds of BCI data sets linear meth-
ods either achieved the minimum test error among the com-
peting algorithms or were at least not significantly worse than
the best non-linear method, cf. [22]. In typical BCI scenarios
high dimensional feature vectors, but only a small number of
training samples are available. In these ‘weak’ feature vectors
discriminative information is spread across many dimensions.
A problematic effect of these high-dimensional small sample
training sets is the well-known curse of dimensionality and
overfitting problems. One possible alternative to avoid this
is to perform a strong preprocessing in order to extract low
dimensional feature vectors which are more tractable for most
classifiers. In most situations such a ‘strong’ preprocessing is
difficult to find since rather strong assumptions about the data
distributions have to be made, which can be problematic in
a BCI context. Therefore a different strategy which is well-
established in machine learning, called regularization, is used
where the idea is to appropriately limit the complexity of the
classifiers function class. Typically a so-called regularization
parameter has to be adapted to the data, that trades off the
incurred training errors versus the stiffness of the function (see
e.g. [20], [23]). For LDA regularization is done by modifying
the covariance matrix

Σ 7→ λΣ+(1−λ )I, (3)

i.e. by shrinking high eigenvalues and attenuating low eigen-
values of Σ ([24]).

To assess classification performance, the generalization er-
ror was estimated by a 10×10-fold cross-validation. Strictly
speaking, the search for good regularization coefficients has
to be performed on the training set in cross-validation. So in
this offline analysis one would have to do a cross-validation
(for model selection, MS) on each of the 100 randomly chosen
training sets within a cross-validation procedure (for estimat-
ing the generalization error, GE), which is very time consum-
ing. Alternatively, doing model selection by cross-validation
on all trials could lead to overfitting and underestimation
of the generalization error. As a practical intermediate way
MS-cross-validation was performed beforehand on a 3×10-
fold cross-validation on randomly chosen subsets of trials,
which have the same size as the training sets in the GE-cross-
validation, i.e. here 90 % of the whole set. This procedure was
tested in several settings without any significant bias on the
estimation of the GE, cf. [25].

For the purpose of this paper we analyze BCI experiments
pursuing three directions: First, out of all binary subsets of
classes in the presented experiments we compare the best
performance of the single modality feature vectors (as pre-
sented in Section V-C) to the combination results when using
all three feature vectors on these binary subsets. Second, we
compute under some simplifications (PROBdiff is omitted
due to its complexity and only a fixed preprocessing was



BOOSTING BIT RATES BY FEATURE COMBINATION AND MULTI-CLASS PARADIGMS 5

chosen) a feature combination on all suitable (see below)
subsets of classes (m = 3, . . . ,6) with multi-class extensions
of the CSP algorithm presented in Section V-E. Finally, to be
able to conclude that the combination of feature combination
and multi-class extensions yield an improvement in the BCI
context, these results are used to find the best setup of classes
measured by the bit rate per decision I (cf. Section IV). For
the choice of the best multi-class setup we follow [16] 4 here.

Note that we omit setups where the subjects did not generate
discriminable brain signals. The criterion for rejection was that
all three kinds of single feature vectors presented in Section V-
C resulted in a classification error of more than 20 %. As
result, 49 binary subsets and 95 multi-class settings remained,
allowing to draw meaningful conclusions concerning feature
combination and multi-class paradigms. More specifically
subjects ac and ah were completely omitted; for the multi-
class combination only two 6 class experiments could be used
completely, the four class experiment with subject aw, and
three class experiments with subjects aa, ac, ar, av, aw and
ay.

C. Feature Extraction

The present behavioral paradigms allow to study the two
prominent brain signals accompanying motor and sensory
imagery: (1) the MRP, focussed over the corresponding motor
cortex contralateral to the involved hand, or slow negative
EEG-shifts over sensory cortices, and (2) the ERD appearing
as a regional attenuation of the µ- and/or β -rhythms. Fig. 3
shows these effects calculated from subject aa on the classes
l and r.

In the following we describe methods to compute feature
vectors that can capture slow EEG shifts (such as MRP) or
ERD effects. Note that all filtering techniques that will be used
are causal. Thus all presented methods are applicable in online
systems.

For the binary classifications some free parameters were
chosen from appropriately fixed parameter sets by cross-
validation for all experiments; each classification setting is
separately described in Section V-B. This selection was done
to obtain the most appropriate setting for each single-feature
analysis. These values were used for both classifying trials
based on single-feature vectors and the combined classifica-
tion. In the multi-class settings a fixed setup of parameters
was chosen which works well for all subjects and subsets
of classes. Note that we expect a further increase of the
multi-class performance if we carefully and extensively choose
parameters for every individual and depending on the number
of classes.
Slow non-oscillatory EEG potential shifts.

To quantify the slow potential shifts, such as the lateralized
MRP, we proceeded in a similar fashion to our approach in [5]
(Berlin Brain-Computer Interface, BBCI). Small modifications

4The choice of the optimal set-up is chosen as the best multi-class
combination without reiterating the EEG experiment with this chosen set-
up. Although, in principle, this could induce a bias, [16] used this pragmatic
strategy in order to avoid repeating experiments without being able to use
exactly the same conditions. It can also be seen as a pre-experiment to an
online BCI multi-class session.

C3 C4 C3 C4

Fig. 3. MRP (left) and on 7–30 Hz bandpass-filtered ERD (right) curves (both
spatial Laplace filtered) for subject aa in the time interval (x-axis) -500 ms
to 3000 ms relative to stimulus on the channels C3 and C4. Thin and thick
lines are averages over right or left hand trials respectively. The contralateral
negativation resp. desynchronization is clearly observable.

were made to take account of the different experimental setups.
Signals were baseline corrected over the interval 0–300 ms and
down-sampled by calculating five jumping means in several
consecutive intervals beginning at 300 ms and ending between
1500 and 3500 ms (in multi-class 2500 ms). Optional a causal
elliptic IIR low-pass filter at 2.5 Hz was applied to the signals
beforehand for the binary classification. We call the whole
algorithm which extracts feature vectors from slow potential
shift features ‘SUB’, due to the fact that it mainly serves to
subsample the signals.

To derive feature vectors for the ERD effects we use two
different methods which reflect different aspects of brain
rhythm modulations. The first (AR) considers the spectral
distribution of the most prominent brain rhythms whereas the
second (CSP) reflects spatial pattern distribution of the most
prominent power modulation in specified frequency bands.
A combination of both by using autoregressive models after
calculating common spatial patterns is conceivable as a further
strategy.
Autoregressive models (AR).

In an autoregressive model of order p each time point of a
time series is represented as a fixed linear combination (AR
coefficients) of the last p data points. The model order p
is considered as a free parameter which was in our setting
selected between 5 and 12 (in multi-class fixed to 8). The AR
coefficients reflect oscillatory properties of the EEG signal, but
do not contain the overall amplitude information. Accounting
for this by adding the variance to the feature vector improves
classification accuracy. To prevent the AR models from being
distorted by EEG-baseline drifts, the signals were high-pass
filtered at 4 Hz. In order to sharpen the spectral information to
focal brain sources (spatial) Laplacian filters were applied. The
interval for estimating the AR parameters started at 500 ms and
the end points were chosen between 2000 ms and 3500 ms (in
multi-class it was fixed to 2500 ms).
Common spatial patterns (CSP).

This method was originally suggested for binary classifica-
tion of EEG trials in [11]. Projections with the most differing
power-ratios in feature space are computed. These can be
calculated by a simultaneous diagonalization of the covariance
matrices of both classes. Only a few orientations with the
highest ratio between their eigenvalues (in both directions)
are selected. Note that this CSP approach can also be used for
slow cortical potentials after some appropriate modifications
for determining the covariance matrices, cf. [26]. First of all,
to focus on effects in the α- and/or β -band (in multi-class
only α) the signals were filtered between 8 and 13 Hz (for α),



6 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. XX, NO. Y, 2004

15 and 25 Hz (for β ) or 7 and 30 Hz (for α and β ) and the
band with best classification performance was chosen. The
number of CSPs used per class was a free parameter to be
chosen between 2 and 4 in the binary case (in multi-class
see V-E). The intervals of interest were chosen as described
above for the AR model. Feature vectors consisted of the
variances of the CSP projected trials, cf. [11]. A further
performance gain can be achieved by calculating the logarithm
of these variances. Note that the CSP algorithm depends
on the label. Consequently this could result in overfitting,
i.e. underestimating the classification error, if we did this
algorithm beforehand on all trials – similar to training a
classifier on all trials and calculating the training error as
test error. To avoid this overfitting one has to calculate the
common spatial patterns only on the training set in cross-
validation, to use these patterns to project the test set on a
lower number of channels and to determine the test error with
the further processing (calculation of variance) and application
of the classifier. Finally, the CSP algorithm allows to neglect
regularization, since only very low dimensional feature vectors
are left with comparatively high numbers of samples.

D. Combination algorithms

Feature combination or sensor fusion strategies are rather
common in speech recognition (e.g. [27]) or vision (e.g. [28])
or robotics (e.g. [29]) where either signals on different time-
scales or from distinct modalities need to be combined. Typical
approaches use a concatenation of the single feature vectors
(discussed as CONCAT below), or a winner-takes-all strategy,
which however cannot increase performance above the best
single feature vector analysis. Furthermore, combinations that
use a joint probabilistic modeling [28] appear promising, but
were not tested in the framework of this paper. We propose two
further methods that incorporate independence assumptions
(PROB and to a smaller extent META) and allow individual
decision boundary fitting to single feature vectors5 (META).
In this Sectionwe will only outline the algorithms for binary
classification on labels ±1. Extension of these strategies to
multi-class is straightforward.
(CONCAT). Here classification is applied to the concatena-
tion of all single feature vectors. Note that careful regulariza-
tion is necessary to account for the increased dimensionality
[23], [20].
(PROB). We start with a set of N feature vectors described
by random variables X j for j = 1, . . . ,N with binary class labels
Y ∈ {±1}. Furthermore, for each feature vector X j an optimal
classifier f j on the single feature vector space D j, i.e. which
minimizes the misclassification risk, is given. Denoting g j,y
as the densities of P( f j(X j)|Y = y) for each feature vector
X j and class label y = ±1, f as the optimal classifier on the
combined feature vector space D = (D1, . . . ,DN), X as the
combined random variable X = (X1, . . . ,XN) and gy as densities
of P( f (X)|Y = y), this means under the assumption of equal

5i.e. to SUB, AR, CSP as described in Section V-C

class priors that for x = (x1, . . . ,xN) ∈ D

f j(x j) = 1 ⇔ f̂ j(x j) := log
g j,1(x j)

g j,−1(x j)
> 0,

f (x) = 1 ⇔ f̂ (x) := log
g1(x)

g−1(x)
> 0.

The assumption of independence between the feature vectors
allows us to factorize the combined density, i.e. to compute
gy(x) = ∏N

j=1 g j,y(x j) for the class labels y = ±1. This leads
to the optimal decision function

f (x) = 1 ⇔ f̂ (x) =
N

∑
j=1

f̂ j(x j) > 0.

In our application, where we assume additionally that all
feature vectors X j are Gaussian distributed with equal co-
variance matrices, i.e. P(X j |Y = y) = N (µ j,y,Σ j), and w j :=
Σ−1

j (µ j,1 −µ j,−1), we get the following classifier

f (x) = 1 ⇔
N

∑
j=1

[w>
j x j −

1
2
(µ j,1 + µ j,−1)

>w j ] > 0.

In terms of LDA this corresponds to forcing the elements
of the estimated covariance matrix that belong to different
feature vectors to zero. Consequently, less parameters have
to be estimated and distortions by accidental correlations of
independent variables are avoided. It should be noted that a
non-linear version of PROB with a gaussian assumption for
each feature vector can be formulated analogously to quadratic
discriminant analysis (QDA), cf. [24]. To avoid overfitting we
have to regularize PROB, and there are two ways feasible
ways of doing so: Regularization of the covariance matrices
with one global parameter (PROBsame) or with separately
selected parameters corresponding to the single-type features
(PROBdiff) as described in equation (3).

Note that PROB differs from the combination algorithm of
section III by the fact that it does not contain the normaliza-
tion.
(META). After training the individual classifiers on each
single feature vector beforehand a meta level classifier is
applied to their continuous output. Although this allows a
custom-made choice of classifiers for each feature vector
which can be useful, e.g. if the decision boundary is linear for
one feature vector and non-linear for another, we simply use
regularized LDA for each of the feature vectors, and select
the regularization coefficients for each single feature vector
individually, i.e. each classifier is individually regularized. For
the meta level classifier that combines the single classifier
results we find that regularization is not needed anymore in
practice, since the meta classifier acts on very low dimensional
feature vectors.

When we use LDA as the classifier or in general the
logarithm of the quotient of both class densities the difference
between PROB and META consists of the fact that PROB
simply sums up all individual single feature vector classifiers,
whereas META additionally learns a weighting between all
classifiers and uses this for decision making. Moreover, META
allows learning of a bias which can usually be neglected.
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Consequently, META extracts discriminative information
from single feature vectors independently and the Meta classi-
fication may exploit inter-relations (also, for example, hidden
dependencies) based on the output of the individual decision
functions. Hence possible high level relations are taken into
account while independence is assumed on a low level.

E. CSP multi-class extensions

An extension of the CSP algorithm to multi-class paradigms
has been previously considered only in [30]. After a short
description of this algorithm, which we subsequently refer to
as IN, we will in the following suggest two new methods for
multi-class CSP beyond it:
Using CSP within the classifier (IN):. This algorithm
reduces a multi-class to several binary problems (cf. [31]) and
was suggested in [30] for CSP in a BCI context. Therefore
CSP is only used in its binary version such that the variances
of the projections to the CSPs are employed as inputs for
an LDA-classifier for each 2-class combination. New trials
are projected on these CSPs and are assigned to the class for
which most classifiers are voting.
One versus the rest CSP (OVR):. We suggest a subtle
modification of the approach above which permits us to com-
pute the CSP approach before the classification. We compute
spatial patterns for each class against all others6. An LDA
multi-class classification is then performed on the variances of
the projections of the EEG signals on all these CSP patterns.
The OVR approach appears rather similar to the approach IN,
but there is in fact a large practical difference. OVR does
multi-class classification on all projected signals whereas IN
does binary classification on the CSP patterns according to the
binary choice.
Simultaneous diagonalization (SIM):. In the binary case,
the CSP algorithm finds a simultaneous diagonalization of
both covariance matrices whose eigenvalues sum to one. Thus
a possible extension to many classes, i.e. many covariances
(Σi)i=1,...,N is to find a matrix R and diagonal matrices
(Di)i=1,...N with elements in [0,1] and satisfying RΣiRT = Di
for all i = 1, ...,N and ∑N

i=1 Di = I. Such a decomposition
can be done exactly for N = 2; for N > 2, in general, only
approximative solutions can be obtained. Several algorithms
exist for approximate simultaneous diagonalization (cf. [32],
[33], [34]), we use the recent algorithm described in [34]
due to its speed and reliability. As opposed to the two class
problem, there is no canonical way to choose the relevant
CSP patterns for multi-class CSP. We explored several options
such as using the highest or lowest eigenvalues. We discovered
that the best strategy was based on the assumption that two
different eigenvalues for the same pattern have the same effect
if their ratios to the mean of the eigenvalues of the other classes
are multiplicatively inverse to each other, i.e. their product
is 1. Thus all eigenvalues λ are mapped to7 score(λ ) :=
max(λ ,1/(1 + (N − 1)2λ/(1− λ ))) and a specified number

6Note that this can be done similarly with pairwise patterns, but in
our studies no advantage was observed and therefore one-versus-the-rest is
favorable, since it chooses less patterns.

7For N = 2 this results in max(λ ,1−λ ).

m of highest scores for each class are used as CSP patterns.
It should be mentioned that each pattern is only used once,
namely for the class which has the highest score. If a second
class chooses the same pattern it is left out for this class and
the next one, i.e. with the next highest score for this class, is
chosen. Finally conventional LDA multi-class classification is
performed on the variances of the projected trials as before.

For the purpose of this paper we will use these combination
methods in two directions: First of all, we will show that a
performance gain can be observed in a BCI context when
using SIM and OVR against IN. Second, we will use these
algorithms together with Feature Combination in the multi-
class experiments to increase the ITR further.

Note that in order to evaluate the performance of a BCI
system one should regard the Information Transfer Rate per
minute and not per decision for ITR. In this case, where the
trials have a fixed (mean) duration of 4.5 s all values have
to be multiplied by 60/4.5 ∼ 13 to get the ITR per minute.
However, this is not done due to the following two reasons: 1.
It does not have any influence on the results and comparisons
in this paper since the rate for all experiments is constant.
2. The decision rate is chosen to be very small to be sure
that we can train suitable classifiers. Due to the fact that
decisions can be made faster in feedback experiments, once a
classifier of suitable quality is trained, real performance is only
meaningful there. Note that it is not enough to consider only
the time interval used for classification since the intermediate
period (e.g. relaxing) could also be important to get a good
performance.

VI. RESULTS

To confirm our hypothesis that the chosen feature vectors
are independent to a sufficient degree we investigate the
following issues. Firstly, we calculate the correlation matrix
of the concatenated feature vectors exemplarily for subject
aa (cf. Fig. 4 left). Here correlations within each feature
vector are observable on the block diagonal, whilst weak
inter-feature correlation is visible in the non-block-diagonal
fields. Secondly, we classify each trial of each suitable 2-
class subset experiment in a leave-one-out cross-validation
(e.g. [35]). We are hereby able to calculate for all correctly
classified (or misclassified) trials of one feature vector what
the distribution of correctly classified (or misclassified) trials
are for another feature vector. This is is visualized in the center
of Fig. 4. We do this for all 2-class subsets of all experiments
and calculate the mean of these distributions. If all feature
vectors are independent, the bars should be of the same size.
Thirdly, we calculate the 3×3-correlation matrix of both the
continuous output of the leave-one-out approach and the error
vector resulting from this procedure for the different feature
vectors (cf. Fig. 4 right). All these pictures together reveal
independence between the feature vectors SUB and AR or
CSP and only a weak dependence between AR and CSP. So a
high gain by a suitable feature combination can be expected.

In Fig. 5 the suggested combination algorithms applied to
all three feature vectors are compared to the best single feature
vector result for all 2 and multi-class combinations out of the
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Fig. 4. In subplot (a) the absolute values of the correlation matrix for subject
aa for (selected dimensions of) the feature-concatenated vectors are plotted
as an image, where white points are values close to zero. The block order
from top to bottom and left to right is SUB, AR, CSP. The two 3×3 matrices
in (b) and (c) visualize the correlation matrix between the feature vectors
(b) with respect to the real-valued leave-one-out output of each trial and (c)
with respect to the leave-one-out error vector for each trial. In both cases the
order is given by (SUB, AR, CSP) (from top to bottom and left to right).
The bars in (d) show for each feature (indicated on the top of the bars) for
the correct classified (‘c’) and misclassified (‘m’) feature vectors in a leave-
one-out approach the portion of correct classified (black) and misclassified
(white) in another feature vector (written to the left of each bar) as mean of
all binary subsets of classes for all experiments.

presented experiments, except for the excluded cases described
above. Typically the standard algorithm CONCAT does not
increase performance, due to the fact that the dimensionality
of the problem increases enormously and therefore estimation
of the huge covariance matrices is rather error-prone. Fur-
thermore, a small gain for the algorithm META against the
best single feature vector result is observable. PROBsame and
PROBdiff usually perform best and reveal a high performance
gain compared to the best single feature vector result. Only
a small advantage of PROBdiff is detectable (where only the
binary results were taken into account). However, PROBsame
might still be preferred due to the fact that the time to train
the classifier is much shorter. Note that in the multi-class
case PROBdiff was not calculated due to the computational
complexity, therefore in this part of the figure less points are
plotted. The scatter plots clearly exhibit visible superiorities
(in 144 results8 ). Applying significance analyses here is
somewhat problematic. Since all possible subsets of given
set of mental states are considered, classification is done,
e.g., for classes {l,r,f } and {l,a,t} of the same experiment.
These observations are clearly dependent since the trials of
class l are involved in both. This means that the assumption
of independent observations is violated. With this caveats in
mind we employ a test of significance in analogy to [36].

8In Fig. 5 every point corresponds to the ITR for one chosen subset of
classes in the multi-class paradigm, i.e., for one possible BCI setting.
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Fig. 5. The visualized scatter plots show the ITR on the best single feature
vector based classifier against the presented combination methods for all 2
and multi-class combinations of all experiments except the ones described
above. Above each scatter plot a histogram of the increase in percent in
ITR compared to the best single feature vector is plotted. For points right
of the vertical line through 0 in each scatter plot the combination algorithm
outperforms the best single feature vector. The fat line shows the regression
line of the points through the zero point calculated by minimizing the squared
loss.
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Fig. 6. The visualized histograms show the decrease in % in classification
error of algorithms SIM (left) resp. OVR (right) compared to IN over all 95
multi-class combinations. For values higher than 0 SIM resp. OVR outperform
IN. Furthermore an approximation of the histogram by a gaussian distribution
is plotted.

The Wilcoxon Rank test yields that META, PROBsame and
PROBdiff significantly exceed the best single feature with
p < 0.1, p < 0.0001, and p < 0.01 respectively. In contrast
CONCAT performs worse than the best single feature with
p < 0.005.

Fig. 6 reveals the predominance of the algorithms SIM and
OVR over IN, although in some cases IN still performs better.
Modification of IN to one-vs-the-rest classification do not
change this result. With the Wilcoxon Rank Test and p < 0.05
we see that SIM and OVR outperform IN significantly whilst
a significant difference between SIM and OVR is not visible.
We should conclude that SIM and OVR are to be preferred to
IN.

Finally, in Fig. 7 the ITRs for different numbers of classes
for each subject are visualized. For each case we choose the
best configuration out of all tested ones and compare this
to the best result without combination. Furthermore, we add
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the theoretical gain given by equation (1) for the two class
subsets. We see that in each case the combination algorithm
shows enhanced performance, but that the theoretical gain can
not be achieved, presumably due to the weak dependencies
between AR and CSP feature vectors. If we now compare the
results for a different number of classes we should take into
consideration that an extensive model selection was performed
for the binary case. For all configurations with more than two
classes a fixed set of hyper-parameters was chosen and the
setup could therefore be occasionally suboptimal. Thus, further
improvements are perceivable, particularly if we do a similarly
extensive hyperparameter search.

Nevertheless, if we take the results of the combination
methods into consideration, then in all cases where we have
enough classes of suitable pairwise discrimination a gain is
observable when using more than two classes, except for
subject ar. However, the full setting of all classes in the two
6 class experiments should not be chosen, since there are big
differences in the pairwise discrimination results and therefore
a suitably chosen subset results in a higher ITR. Note that in
both 6 class experiments the highest gain is achieved with
four classes. Interestingly, this is in contrast to the results
without using our combination methods where the highest gain
is found in a three class setup, a results that was also found
in [16], or in some cases with a 2-class setup.

For subjects aw and ay a high discrepancy in discrim-
inability between SUB feature vectors (>20 % in the binary
case) on one hand and the AR or CSP feature vectors
(<10 % in the binary case) on the other is observable. The
gain here by combination is small which can be expected
under these circumstances. Nevertheless, a gain or at least
similar results were achieved with the feature combination.
Consequently, combination also works in settings where some
single classifiers are very powerful, and others are not. But
is not recommend, due to the small possible increase on one
hand and higher complexity on the other.

The same is true for subject ar, but here the slow potentials
were disturbed by high drifts due to measurement problems. A
repeated experiment should show if feature combination can
also help to increase performance for this subject.

VII. DISCUSSION

We pursued the path towards enhanced bit transfer rates in
EEG-based BCI technology by using: (a) feature combination
and (b) multi-class paradigms. This paper includes new algo-
rithmic aspects such as the development of new feature com-
bination strategies and a new algorithm that fully generalizes
previous work on CSP ([11]) to multi-class problems as well
as a theoretical contribution of how much can be gained when
using more than two decision alternatives for BCI. We show
that across a number of subjects both strategies are successful
in boosting ITRs.

The use of a combination of feature vectors of independent
physiological nature has already been suggested several times
before [9], [10]. Nevertheless our work (see also [8]) is the
first to pursue this interesting aspect in detail, showing that bit
rate gains as high as 50% can be achieved when learning the
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Fig. 7. The bar plot visualizes the highest ITRs for all algorithms without
combination (all colors except black) presented here for all subjects for
different numbers of classes from 2 (dark gray, #2) to 6 (light gray, #6).
As a prolongation of each color bar we show the performance gain achieved
with a combination method in black (+) and for the two class subsets the
gain in white (TH) which theoretically can be achieved by formula (1) if
feature vectors are perfectly independent. The number behind the subject code
specifies the number of classes used for the specific experiment for subjects
who took part in more than one experiment.

appropriate combination (PROB) between Bereitschaftspoten-
tial, desynchronization dynamics, and spatial maps. Although
the physiological processes might appear independent from the
medical point of view, it was not initially clear that we could
confirm this independence assumption on the raw data level
and thus gain from this fact when classifying, even if not all
feature vectors are fully independent, e.g. AR and CSP.

In this paper we have been using an offline set-up for our
evaluations. The next step would be to provide an online
feedback based on these methods. In our first experiments
with this approach we train a classifier offline after a short
training phase of about 30 minutes as described above, and
then present continuous feedback under ongoing classification
on the measured EEG. First approaches based only on CSP
feature vectors (both binary and multi-class) show good per-
formance and furthermore the opportunity to achieve much
higher rates than 4.5 seconds for each decision. The ultimate
challenge is now to fully transfer the proposed combination
techniques to a real online feedback scenario.
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