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Abstract—During the last years interest has been growing to find an effec-
tive communication channel which translates human intentions into control
signals for a computer, the so called Brain-Computer Interface (BCI). One
main goal of research is to help patients with severe neuromuscular dis-
abilities by substituting normal motor outputs. Various cortical processes
were identified which are suitable for implementing such a system on basis
of scalp recorded electroencephalogram (EEG), e.g., slow cortical poten-
tials (SCP) and event-related desynchronisation (ERD) of 10–20 Hz brain
rhythms. Until quite recently BCI systems used only few EEG channels but
by use of advanced machine learning techniques it became possible to ex-
ploit the spatial information provided by multi-channel EEG. While the use
of such high density spatial sampling increases the accuracy of the system
it may—depending on the computational effort of the signal processing—
pose a problem for the implementation of the feedback in real-time. Here
we propose a method that offers a substantial speed-up for classification of
SCP features as used in the Berlin Brain computer interface (BBCI) [1].
Instead of applying the time consuming low-pass filtering to all, say 120,
EEG channels a suitable spatial projection extracts only 2 or 4 new chan-
nels which can be used without any loss of classification accuracy in our
experiments. Our approach is based on the technique of common spatial
patterns (CSP) which were suggested in [2] to extract ERD features from
EEG. While in its original form CSP is only applicable to oscillatory fea-
tures we present a new variant which allows to use CSP for SCP features
without regularisation even in case of large channel numbers or few train-
ing samples.

Keywords—multi-channel electroencephalogram, brain-computer inter-
face, slow cortical potentials, movement related potential, Bereitschaftspo-
tential, common spatial patterns, single-trial classification.

I. INTRODUCTION

A brain-computer interface (BCI) is a system for controlling a
device, e.g, a computer, a wheelchair or a neuroprothesis by hu-
man intentions. According to the definition agreed upon at the
first international meeting for BCI technology the system must
not depend on the brain’s normal output pathways of periph-
eral nerves and muscles [3]. The present approach is applied
to non-invasively measured electroencephalogram (EEG) data
but it applies equally well to electrocorticogram (ECoG) data.
This Berlin Brain-Computer Interface (BBCI) uses neuronal sig-
natures of well-established (’overlearned’) motor competences,
such as keyboard typing. Hence, it provides the chance to work
without time-comsuming training of subjects or patients for effi-
cient BCI performances which in some other BCI variants could
eventually take weeks. In the current BBCI version healthy sub-
jects do execute such overlearned movements rather than just
imagine them because this instruction appears as to correspond
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as closely as possible to the movement intentions of a paralyzed
patient. In contrast, if the ’no-motor-output’ condition of a pa-
tient were to be mimicked with imagined movements, the veto-
ing of the actual movement required to cancel the motor output
would face healthy subjects with a paradoxical task which has
no correspondence in paralyzed patients. On the other hand, in
studies with real movements one has to be careful to exclude
any possible use of afferent nerve signals which the sensorimo-
tor areas could receive during actual movement execution. Ac-
cordingly, the basic rationale of the BBCI paradigm requires a
capability to predict the laterality of imminent hand movements
prior to any EMG activity. This movement intention is expected
to safely transfer from BCI studies with healthy subjects to true
BCI control of paralyzed patients.

In [1] we suggested a preprocessing method that extracts fea-
tures of the Bereitschaftspotential (BP, readiness potential) from
multi-channel EEG data. In the meantime we carried out several
experiments with the paradigm of self-paced keyboard typing
using up to 128 EEG channels. Also a realtime BCI feedback
system was established. While the use of a large number of
electrodes increases classification performance in offline stud-
ies, for the feedback system a smaller number of channels has to
be selected due to the computational demand of the processing
algorithms.

In this paper we suggest to extract few discriminative spa-
tial patterns during the calibration of the system (training pe-
riod) and to use this information to effectively reduce the num-
ber of channels that have to be processed for feedback control.
The method is based on a technique known from statistical pat-
tern recognition called common spatial patterns (CSP) which
allows to determine directions that maximize the variance that
can be explained by one condition and at the same time min-
imize the variance explained by another condition. This tech-
nique was suggested by [4] for spatial analyses of EEG signals,
and more specifically by [2] to find spatial structures of event-
related desynchronization (ERD) in a BCI context. Since ERD
is directly reflected by the variance of band-pass filtered signals
this can be done by a straight forward application of CSP. Here
we show that by a slight but crucial modification of the CSP
algorithm it can be used also for slow cortical potential (SCP)
variations like the Bereitschaftspotential.
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Fig. 1. Event-related potentials (ERPs) for subject aa at channels C3 and C4,
thin line for right, thick line for left events. The scalp maps show the potential
distributions for left and right hand finger movements between -250 and -100 ms.

II. NEUROPHYSIOLOGICAL BACKGROUND

Concerning the selection of brain signals we focussed here on
one variant of SCPs which are specifically related to the prepa-
ration of motor commands. Using multi-channel EEG-mapping
it has been repeatedly demonstrated that several highly localized
brain areas contribute to cerebral motor command processes,
[5]. A negative Bereitschaftspotential precedes the voluntary
initiation of movements, and actual task-performance (finger
flexions and extensions over a period of six seconds) are accom-
panied by a negative DC shift called a performance-related neg-
ativity (PN). A differential scalp potential distribution can be re-
liably demonstrated in a majority of experimental subjects with
larger BP at lateral scalp positions (C3, C4) positioned over the
left or right hemispherical primary motor cortex, respectively,
consistenly correlating with the performing (right or left) hand,
see Fig. 1.

III. EXPERIMENTS

In this paper we analyze EEG data from 13 experiments with
6 healthy subjects. The persons sat in a normal chair with fingers
in the standard typing position at the computer keyboard. They
were instructed to press keys with index and little fingers in self-
chosen order and timing matching approximately a predefined
speed (one tap every 1 s, 1.5 s, 2 s or 5 s).

Brain activity was measured with 27, 52 or 120 Ag/AgCl
electrodes at positions of the extended international 10-20 sys-
tem referenced to nasion and sampled at 1000 Hz, band-pass
filtered to 0.05–200 Hz, and down-sampled to 100 Hz for fur-
ther offline analyses. Besides EEG a bilateral electromyogram
(EMG) of the musculus flexor digitorum and a horizontal and
vertical electrooculogram (EOG) were recorded to check for
muscle activation and eye movements. All processing is solely
based on the EEG channels. An important characteristics of our
present analysis was to refrain from any trial rejection because
of eventual artifacts so as to enforce robust classification.

IV. SINGLE-TRIAL PROCESSING

A. Feature Extraction and Aim of Classification

Starting point is our approach for the Bereitschaftpotential
presented in [1]. It acts on segments of 128 samples in time

(i.e. 1.28 s). A low-pass filter which puts emphasis on the late
part of the time window is implemented by means of FFT: The
windowed (w(n) := 1− cos(nπ/128)) signals are transformed
to the spectral domain where those coefficients are set to 0 that
do not fall into the pass-band 0.4–3.5 Hz. The inverse FFT gives
filtered signals from which the last 150 ms are downsampled to
20 Hz by calculating means in 3 non-overlapping 50 ms win-
dows. This leads to 3 sample values per channel. The concate-
nation of those values for all chosen channels is taken as feature
vector.

The aim of classification is to predict the laterality of upcom-
ing movements (left vs. right hand) before EMG activity starts.
The exact start of EMG activity is different in each trial. Since
in this paper we do not aim at an absolute evaluation of the BCI
approach, but only to assess the effectiveness of the new method
we simply compare classification at -100 ms before keypress,
which is in most cases before EMG onset.

B. Classification and Validation

There are neurophysiological indications that the assumption
of gaussianity is realistic for EEG signals, cf. [6]. As this gaus-
sianity is preserved by our linear preprocessing steps the classi-
fication problem in feature space should still be linear, cf. also
[7], [8]. Therefore we classify by linear discriminant analy-
sis (LDA). In case one has high-dimensional features and only
comparatively few samples, regularization [9] is needed to avoid
overfitting. The regularization parameter is fitted to the data by
cross-validation on each training set.

We evaluate the performance of classification algorithms by
10×10-fold cross-validation. To this end the set of all trials is
divided randomly in 10 parts. Classifiers are trained on nine of
those parts and evaluated on the left-out part. This is repeated
10 times with different random divisions. This procedure yields
100 test error results. The mean of those is an estimation for the
generalization error of the algorithm (’cross-validation error’).

C. Feedback

For BCI feedback every 40 ms the most recent block of EEG
data is processed and the continuous output of the previously
trained classifier is translated into a cursor movement on the
computer screen. While we do not report on feedback exper-
iments because this goes beyond the scope of this paper, the
proposed method is capable to enhance feedback generation.

V. COMMON SPATIAL PATTERNS FOR SCPS

In [2] the CSP algorithm is applied with covariance matrices
that are calculated from band-pass filtered EEG signals. The
resulting patterns are directions of the most pronounced differ-
ences in variance between the two classes. Since the variance
of a band-pass filtered signal is a measure for the energy in the
corresponding frequency band, the patterns reflect the spatial
distributions of event-related (de)synchronization effects.

For the SCPs this approach is not appropriate since variance
is not a measure for the (negative) shift in the EEG signals. We
need a viable concept of variance that reflects the extent of an
EEG shift relative to a baseline of event unrelated brain activity.
After FFT filtering, see Section IV-A, the baseline is at 0 µV.
Therefore the non-centered variance var(z) = z>z (i.e. assuming
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zero mean) is a measure for the deflection relative to the base-
line. Let x̂i ∈

� n (n: # of channels) be the mean over the 150 ms
window that we extract after FFT filtering and yi ∈ {’L’, ’R’}
be the label for each trial i ∈ {1, ...,N}. The non-centered class
covariance matrices are defined as follows:

Σl =
1

#{i : yi = l} ∑
i:yi=l

xix
>
i for l ∈ {’L’, ’R’}. (1)

The choice of calculating the mean in the 150 ms window was
made to extract spatial patterns that are valid for the whole time
of the analysis window, see also the discussion on stationarity in
Section VII. The following steps are similar to [2]. First of all
we make a whitening transformation, i.e., we determine a matrix
P such that

P(Σ’L’ + Σ’R’)P> = I. (2)

By spectral theory there is an orthogonal matrix R (columns are
eigenvectors) and a diagonal matrix D (eigenvalues) satisfying

PΣ’R’P
> = RDR>. (3)

Subtracting equation (3) from (2) yields

PΣ’L’P
> = R(1−D)R>. (4)

Obviously the eigenvalues of corresponding eigenvectors of the
transformed covariances matrices sum to one: A direction that
has much variance in events of one class (high eigenvalue) has
little variance in events of the other class (low eigenvalue). For
discriminability between the two classes one should extract from
R those eigenvectors which correspond to the eigenvalues close
to 0 or 1, i.e. which guarantee a large difference in variance for
the two classes. We take 1 or 2 eigenvectors with lowest and 1 or
2 with highest eigenvalue (i.e. 2 or 4 eigenvectors in total). Fi-
nally, the projection on the relevant spatial patterns is performed
by

Signalnew = R̃>P Signalold,

where signals are row vectors and R̃ is the matrix of relevant
eigenvectors (columns) extracted from R. Due to the channel-
wise linearity of all processing steps this projection on the CSPs
can be performed at any position in the processing chain without
changing the output. Choice (3) of Fig. 2 makes clear that using

Trial Downsampling ClassificationFFT filter

Reflection on CSP

(1)
(2)

(3)

Fig. 2. The schema shows the processing of one single-trial. The projection
on the CSPs can be performed in any place of that chain without changing the
output because all transformations are linear in each channel.

the CSP projection cannot increase classification performance.
This is at least true in the ideal case where the two classes are
distributed according to known gaussian distributions: In this
case LDA determines a linear projection w of the CSP-projected
features on a hyperplane that minimizes the misclassification
risk. Since a projection on the same hyperplane can be obtained
from the original features (namely by wR̃>P) the application of
LDA on the original features will attain the same misclassifica-
tion risk or less. But the dimensionality of the features vectors is

TABLE I

THE TABLE SHOWS THE CROSS-VALIDATION ERRORS FOR ALL

EXPERIMENTS. ’UNREG’ AND ’REG’ DENOTE THE FORMER PROCESSING

WITH UNREGULARIZED RESP. REGULARIZED CLASSIFICATION, AND

CSP-SCP IS THE PROPOSED NEW APPROACH WITH UNREGULARIZED

CLASSIFICATION. THE NUMBER OF USED PATTERNS ARE GIVEN IN THE

LAST ROW MARKED #. SUPERSCRIPTS ON THE SUBJECT CODE INDICATE

THE NUMBER OF EEG CHANNELS IF DIFFERENT FROM 27.

Subj Rate Unreg Reg CSP-SCP #
aa 2 s 6.1± 1.2 5.2± 0.8 3.5± 0.8 2
aa 1 s 15.1± 1.8 15.2± 0.9 14.2± 0.8 2
aa52 1.5 s 12.3± 0.7 11.9± 0.6 12.3± 0.4 2
aa52 1.5 s 7.7± 0.4 7.9± 0.8 6.4± 0.5 4
aa120 2 s 14.5± 2.1 7.5± 0.7 7.8± 0.7 4
al52 2 s 31.2± 1.6 31.8± 1.4 33.4± 0.6 2
ai 1 s 19.4± 1.0 18.4± 1.0 19.6± 0.8 4
ai 2 s 19.3± 1.4 18.8± 1.0 17.6± 1.0 4
ad 1 s 19.7± 1.0 20.5± 1.0 20.5± 0.6 4
ad 2 s 25.1± 2.6 22.2± 1.8 18.5± 1.3 4
ab 2 s 26.4± 1.1 25.9± 1.5 26.4± 0.5 4
af 2 s 20.1± 1.3 19.7± 0.9 19.3± 0.9 2
af 5 s 17.5± 1.2 14.7± 0.6 15.8± 0.5 2
mean 18.0± 7.1 16.9± 7.6 16.6± 8.1

reduced to 6 or 12 (for 2 resp. 4 CSPs times 3 samples in time)
independent of the number of EEG channels. That means regu-
larization is not needed even in a setup with a large number of
EEG electrodes or cases where only very few training samples
are available. On the other hand it could happen that the few
chosen CSPs do not capture all discriminative information and
classification results degrade. This issue will be addressed in the
results Section VI-A.

The advantage of the CSP method becomes apparent when
the projection on the spatial patterns is put in position (1) of
Fig. 2. Then the number of channels that has to be sent through
the time consuming FFT filtering is substantially reduced, e.g.,
from 120 to 4. Of course the spatial projection also takes some
time. Section VI-B discusses the overall gain of the proposed
method in this respect.

VI. RESULTS

A. Classification Accuracy

In table I the results for our previous approach for the reg-
ularized and unregularized case can be compared to the results
for the new CSP-SCP approach, where a suitable number of pat-
terns (2 or 4) was chosen. The only significant difference in the
table is that in the 120 channel setup unregularized classifica-
tion breaks down. The good news is that as little as 2 or 4 CSP
channels are sufficient for a competitive classification.

As example, in Fig. 3 the first spatial pattern is shown for each
class (subject ad with the 27 channel cap and rate of 2 s). Note
that the patterns do not have a direction/polarity. The numbers
below the patterns are the corresponding eigenvalues. Due to
equation (2) these values range between 0.5 (’non decisive’) and
1 (’decisive’).
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Fig. 3. The first spatial pattern for left resp. right finger events (subject ad at a
tapping rate of 2 s, ’ev’=eigenvalue). White and black locations are brain areas
which give most contribution to the discrimination between the two classes.

B. Computational Load

Having demonstrated that the new approach reaches the same
classification accuracy even when using only a few (new) chan-
nels we have to assess the gain of the method. Let N be the
number of channels, T the number of samples and n the num-
ber of spatial patterns we project on. In our previous approach
we have to do the FFT on each channel twice, which can be
done in O(NT logT ). The following steps of our old method are
included in this asymptotic behavior. In our new approach we
have to do the projection first, which can be done in O(nT N),
and together with the FFT on the remaining channels we obtain
O(nT N + nT logT ). In our case we have n� min(logT,N).
Furthermore the hidden constant factors in the asymptotic com-
plexity are much higher for the FFT as for the matrix multiplica-
tion. Therefore the new method is expected to be considerably
faster than the old one. This was experimentally confirmed (fac-
tor of about 10) by comparing the time needed to process and to
classify one EEG segment according to the new and to the old
method, cf. Table II.

VII. CONCLUSION

Starting point of the investigations was the BBCI approach
of [1] for detecting lateralized slow pre-movement potentials in
self-paced finger movements. In that study machine learning
techniques were used to analyze the full spatio-temporal struc-
ture of multi-channel EEG trials. In the approach presented
here, spatial and temporal analysis are split in two separate parts.
In the first step of machine training spatial patterns are extracted
that are stationary during the time of the analysis window, i.e.,
from -250 to -100 ms relative to keypress. In the second step the
temporal structure is analyzed with respect to the few station-
ary patterns that we extracted before. This procedure reduces
the complexity of the problem considerably. At first sight the
methodology might seem unappropriate since it is known from
neurophysiological studies that there are different components
during the time course of movement related potentials (MRPs)
that have distinct spatial patterns, [5]. But the classification al-

TABLE II

THE TABLE SHOWS THE RATIO BETWEEN THE TIME NEEDED FOR THE

PREVIOUS METHOD AND THE NEW CSP-SCP APPROACH FOR N =27, 52,

120 CHANNELS AND n =2 OR 4 SPATIAL PATTERNS.

2 4

N
=

27

8.4 4.9
2 4

N
=

52

11.8 7.3
2 4

N
=

12
0

15.4 7.5

gorithm focuses only on the negative slope which immediately
preceeds the motor potential. During this time interval that be-
longs to only one MRP component, the late preparation or BP2,
the assumption of stationarity holds to a sufficient degree [5].
This is confirmed for our data by the fact the the CSP-SCP clas-
sification results are equally good compared to the full spatio-
temporal approach, cf. Table I. The advantange of the new ap-
proach is that after having determined the spatial structures the
calculation of the BCI feedback signal can be done in a frac-
tional amount of time, cf. Table II. Due to the reduction of the
problem complexity it is no longer neccessary to use regulariza-
tion even when using a large number of channels or having only
few training examples.

Furthermore the patterns which are determined by the CSP-
SCP technique reveal the spatial structures that hold the most
discriminative information of the slow cortical potential varia-
tions which can be interpreted neurophysiologically.

VIII. FURTHER RESEARCH

The next step is to perform feedback experiments using a
larger number of EEG electrodes which became possible with
the presented algorithm and verify if the classification accuracy
benefits in the same way as it was true for offline analysis. The
choice of calculating the mean of the 150 ms window, which was
described in Section V is heuristic. Probably the algorithm can
be enhanced, e.g., by using a weighted mean.

Furthermore the CSP approach in it present version is only
suitable for two-class experiments. A simple way to use CSP
for multi-class problems is to combine all pairwise binary clas-
sifications or to combine all one-against-the-rest classifications.
More sophisticated extensions for multi-class cases are subject
of ongoing research.
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