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tionThe Berlin Brain-Computer Interfa
e (BBCI) uses a ma
hine learning approa
hto extra
t subje
t-spe
i�
 patterns from high-dimensional EEG-features opti-mized for revealing the user's mental state. Classi
al BCI appli
ation are braina
tuated tools for patients su
h as prostheses (see Se
tion 4.1) or mental textentry systems ([2℄ and see [3�6℄ for an overview on BCI). In these appli
ationsthe BBCI uses natural motor 
ompeten
es of the users and spe
i�
ally tailoredpattern re
ognition algorithms for dete
ting the user's intent. But beyond reha-bilitation, there is a wide range of possible appli
ations in whi
h BCI te
hnologyis used to monitor other mental states, often even 
overt ones (see also [7℄ in thefMRI realm). While this �eld is still largely unexplored, two examples from ourstudies are exempli�ed in Se
tion 4.3 and 4.4.1.1 The Ma
hine Learning Approa
hThe advent of ma
hine learning (ML) in the �eld of BCI has led to signi�
antadvan
es in real-time EEG analysis. While early EEG-BCI e�orts required neu-rofeedba
k training on the part of the user that lasted on the order of days, inML-based systems it su�
es to 
olle
t examples of EEG signals in a so-
alled
alibration measurement during whi
h the user is 
ued to perform repeatedlyanyone of a small set of mental tasks. This data is used to adapt the system tothe spe
i�
 brain signals of ea
h user (ma
hine training). This step of adaptionseems to be instrumental for e�e
tive BCI performan
e due to a large inter-subje
t variability with respe
t to the brain signals ([8℄). After this preparationstep, whi
h is very short 
ompared to the subje
t training in the operant 
on-ditioning approa
h ([9,10℄), the feedba
k appli
ation 
an start. Here, the users
an a
tually transfer information through their brain a
tivity and 
ontrol appli-
ations. In this phase, the system is 
omposed of the 
lassi�er that dis
riminatesbetween di�erent mental states and the 
ontrol logi
 that translates the 
lassi�eroutput into 
ontrol signals, e.g., 
ursor position or sele
tion from an alphabet.
∗This paper is a 
opy of the manus
ript submitted to appear as [1℄.
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Fig. 1. Overview of the ma
hine-learning-based BCI system. The system runs in twophases. In the 
alibration phase, we instru
t the subje
ts to perform 
ertain tasks and
olle
t short segments of labeled EEG (trials). We train the 
lassi�er based on theseexamples. In the feedba
k phase, we take sliding windows from 
ontinuous stream ofEEG; the 
lassi�er outputs a real value that quanti�es the likeliness of 
lass member-ship; we run a feedba
k appli
ation that takes the output of the 
lassi�er as input.Finally the subje
t re
eives the feedba
k on the s
reen as, e.g., 
ursor 
ontrol.An overview of the whole pro
ess in an ML-based BCI is sket
hed in Fig. 1.Note that in alternative appli
ations of BCI te
hnology (see Se
tion 4.3 and4.4), the 
alibration may need novel nonstandard paradigms, as the sought-aftermental states (like la
k of 
on
entration, spe
i�
 emotions, workload) might bedi�
ult to indu
e in a 
ontrolled manner.1.2 Neurophysiologi
al FeaturesReadiness Potential Event-related potentials (ERPs) are transient brain re-sponses that are time-lo
ked to some event. This event may be an externalsensory stimulus or an internal state signal, asso
iated with the exe
ution ofa motor, 
ognitive, or psy
hophysiologi
 task. Due to simultaneous a
tivity ofmany sour
es in the brain, ERPs are typi
ally not visible in single trials (i.e.,the segment of EEG related to one event) of raw EEG. For investigating ERPs,EEG is a
quired during many repetitions of the event of interest. Then shortsegments (
alled epo
hs or trials) are 
ut out from the 
ontinuous EEG signalsaround ea
h event and are averaged a
ross epo
hs to redu
e event-unrelated
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EMGFig. 2. Response averaged event-related potentials (ERPs) of a right-handed subje
tin a left vs. right hand �nger tapping experiment (N =275 resp. 283 trials per 
lass).Finger movements were exe
uted in a self-pa
ed manner, i.e., without any external
ue, using an approximate inter-trial interval of 2 se
onds. The two s
alp plots showthe topographi
al mapping of s
alp potentials averaged within the interval -220 to -120ms relative to keypress (time interval verti
ally shaded in the ERP plots; initialhorizontal shading indi
ates the baseline period). Larger 
rosses indi
ate the positionof the ele
trodes CCP3 and CCP4 for whi
h the ERP time 
ourse is shown in thesubplots at both sides. For 
omparison time 
ourses of EMG a
tivity for left and right�nger movements are added. EMG a
tivity starts after -120ms and rea
hes a peak of70µV at -50ms. The readiness potential is 
learly visible, a predominantly 
ontralateralnegativation starting about 600ms before movement and raising approximately untilEMG onset.ba
kground a
tivity. In BCI appli
ations based on ERPs, the 
hallenge is todete
t ERPs in single trials.The readiness potential (RP, or Bereits
haftspotential) is an ERP that re-�e
ts the intention to move a limb, and therefore pre
edes the physi
al (mus-
ular) initiation of movements. In the EEG it 
an be observed as a pronoun
ed
orti
al negativation with a fo
us in the 
orresponding motor area. In handmovements the RP is fo
ussed in the 
entral area 
ontralateral to the perform-ing hand, 
f. [11�13℄ and referen
es therein for an overview. See Fig. 2 for anillustration. Se
tion 4.2 shows an appli
ation of BCI te
hnology using the readi-ness potential. Further details about our BCI-related studies involving RP 
anbe found in [8,14�16℄.Sensorimotor Rhythms Apart from transient 
omponents, EEG 
omprisesrhythmi
 a
tivity lo
ated over various areas. Most of these rhythms are so-
alledidle rhythms, whi
h are generated by large populations of neurons in the respe
-tive 
ortex that �re in rhythmi
al syn
hrony when they are not engaged in aspe
i�
 task. Over motor and sensorimotor areas in most subje
ts os
illationswith a fundamental frequen
y between 9 and 13Hz 
an be observed, the so
alled µ-rhythm. Due to its 
omb-shape, the µ-rhythm is 
omposed of severalharmoni
s, i.e., 
omponents of double and sometimes also triple the fundamentalfrequen
y ([17℄) with a �xed phase syn
hronization, 
f. [18℄. These sensorimotorrhythms (SMRs) are attenuated when engagement with the respe
tive limb takes



pla
e. As this e�e
t is due to loss of syn
hrony in the neural populations, it istermed event-related desyn
hronization (ERD), see [19℄. The in
rease of os
il-latory EEG (i.e., the reestablishment of neuronal syn
hrony after the event) is
alled event-related syn
hronization (ERS). The ERD in the motor and/or sen-sory 
ortex 
an be observed even when a subje
t is only thinking of a movementor imagining a sensation in the spe
i�
 limb. The strength of the sensorimo-tor idle rhythms as measured by s
alp EEG is known to vary strongly betweensubje
ts.Se
tion 3.1 and 3.2 show results of BCI 
ontrol exploiting the voluntarymodulation of sensorimotor rhythm.Error-Related Potentials It is a well-known �nding in human psy
hophysi
sthat a subje
t's re
ognition of having 
ommitted a response error is a

om-pagnied by spe
i�
 EEG variations that 
an be observed in (averaged) ERPs(e.g. [20℄). The ERP after an error trial is 
hara
terized by two 
omponents:a negative wave 
alled error negativity (NE) [21℄ (or error-related negativity(ERN, [22℄)) and a following broader positive peak labeled as error positivity(PE), [20℄. It has been demonstrated that the PE is more spe
i�
 to errors whilethe NE 
an also be observed in 
orre
t trials, 
f. [20℄, [23℄. Although both am-plitude and laten
y depend on the spe
i�
 task, the NE o

urs delayed and lessintense in 
orre
t trials than in error trials. The NE is also eli
ited by negativefeedba
k ([24℄) and by error observation ([25℄). Furthermore [26℄ investigatederror-related potentials in response to errors that are made by an interfa
e inhuman-
omputer intera
tion.Se
tion 3.3 investigates the dete
tability of error-related potentials after er-roneous BCI feedba
k, whi
h gives a perspe
tive of the potential use in BCIsystems as a `se
ond-pass' response veri�
ation.2 Pro
essing and Ma
hine Learning Te
hniquesDue to the simlutaneous a
tivity of many sour
es in the brain and additionalin�uen
e by noise the dete
tion of relevant 
omponents of brain a
tivity in singletrials as required for BCIs is a data analyti
al 
hallenge. One approa
h to 
om-pensate for the missing opportunity to average a
ross trials is to re
ord braina
tivity from many sensors and to exploit the multi-variateness of the a
quiredsignals, i.e., to average a
ross spa
e in an intelligent way. Raw EEG s
alp po-tentials are known to be asso
iated with a large spatial s
ale owing to volumne
ondu
tion ([27℄). A

ordingly all EEG 
hannels are highly 
orrelated and pow-erful spatial �lters are required to extra
t lo
alized information with a goodsignal to noise ratio (see also the motivation for the need of spatial �ltering in[28℄).In the 
ase of dete
ting ERPs, su
h as RP or error-related potentials, the ex-tra
tion of features from one sour
e is mostly done by linear pro
essing methods.In this 
ase the spatial �ltering 
an be a
omplished impli
itly in the 
lassi�
ation



step (inter
hangability of linear pro
essing steps). For the dete
tion of modula-tions of SMRs, the pro
essing is non-linear (e.g. 
al
ulation of band power). Inthis 
ase, the prior appli
ation of spatial �ltering is extremely bene�
ial. Themethods used for BCIs range from simple �xed �lters like Lapla
ians ([29℄), anddata driven unsupervised te
hniques like independent 
omponent analysis (ICA)[30℄ or model based approa
hes ([31℄) to data driven supervised te
hniques like
ommon spatial patterns analysis (CSP) [28℄.In this Se
tion we summarize the two te
hniques that we 
onsider most im-portant for 
lassifying multi-variate EEG signals, CSP and regularized lineardis
riminant analysis. For a more 
omplete and detailed review of signal pro-
essing and pattern re
ognition te
hniques see [8,32,33℄.2.1 Common Spatial Patterns AnalysisThe CSP te
hnique (see [34℄) allows to determine spatial �lters that maximize thevarian
e of signals of one 
ondition and at the same time minimize the varian
e ofsignals of another 
ondition. Sin
e varian
e of band-pass �ltered signals is equalto band-power, CSP �lters are well suited to dete
t amplitude modulations ofsensorimotor rhythms (see Se
tion 1.2) and 
onsequently to dis
riminate mentalstates that are 
hara
terized by ERD/ERS e�e
ts. As su
h it has been well usedin BCI systems ([14,35℄) where CSP �lters are 
al
ulated individually for ea
hsubje
t on the data of a 
alibration measurement.The CSP te
hnique de
omposes multi
hannel EEG signals in the sensorspa
e. The number of spatial �lters equals the number of 
hannels of the originaldata. Only few �lters have properties that make them favorable of 
lassi�
ation.The dis
riminative value of a CSP �lter is quanti�ed by its generalized eigen-value. This eigenvalue is relative to the sum of the varian
es in both 
onditions.An eigenvalue of 0.9 for 
lass 1 means an average ratio of 9:1 of varian
es during
ondition 1 and 2. See Fig. 3 for an illustration of CSP �ltering.For details on the te
hnique of CSP analysis and its extensions we refer to([28,36�39℄).2.2 Regularized Linear Classi�
ationFor known Gaussian distributions with the same 
ovarian
e matrix for all 
lasses,it 
an be shown that Linear Dis
riminant Analysis (LDA) is the optimal 
lassi-�er in the sense that it minimizes the risk of mis
lassi�
ation for new samplesdrawn from the same distributions ([40℄). Note that LDA is equivalent to FisherDis
riminant and Least Squares Regression ([40℄). For EEG 
lassi�
ation theassumption of Gaussianity 
an be a
hieved rather well by appropriate prepro-
essing of the data. But the mean and 
ovarian
e matrix of the distributionshave to be estimated from the data, sin
e the true distributions are not known.Espe
ially for high-dimensional data with few trials the estimation of the 
o-varian
e matrix is very impre
ise, be
ause the number of unknown parametersis quadrati
 in the number of dimensions. In the estimation of 
ovarian
e matri-
es this leads to a systemati
 error: Large eigenvalues of the original 
ovarian
e
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Fig. 3. The input the CSP analysis are (band-pass �ltered) multi-
hannel EEG signalswhi
h are re
orded for two 
onditions (here `left' and `right' hand motor imagery. Thereults of CSP analysis is a sequen
e of spatial �lters. The number of �lters (here N) isequal to the number of EEG 
hannels. When these �lters are applied to the 
ontinuousEEG signals, the (average) relative varian
e in the two 
onditions is given by theeigenvalues. An eigenvalue near 1 results in large varian
e of signals of 
ondition 1 andan eigenvalue near 0 reults in small varian
e for 
ondition 1. Most eigenvalues are near
0.5 su
h that the 
orresponding �lters do not 
ontribute to the dis
rimination.matrix are estimated too large, and small eigenvalues are estimated too small,see Fig. 4. This error in the estimation degrades 
lassi�
ation performan
e (andinvalidates the optimality statement for LDA). A 
ommon remedy for the sys-temti
 bias, is shrinkage of the estimated 
ovarian
e matri
es (e.g. [41℄):The estimator of the 
ovarian
e matrix Σ̂ is repla
ed by

Σ̃ = (1 − γ)Σ̂ + γλIfor a γ ∈ [0, 1] and λ de�ned as average eigenvalue trace(Σ̂)/d with d beingthe dimensionality of the feature spa
e and I being the identity matrix.. Thenthe following holds. Sin
e Σ̂ is positive semi-de�nite we 
an have an eigenvaluede
omposition Σ̂ = VDV
⊤ with orthonormal V and diagonal D. Due to theorthogonality of V we get

Σ̃ = (1−γ)VDV
⊤+γλI = (1−γ)VDV

⊤+γλVIV
⊤ = V ((1 − γ)D + γλI)V⊤as eigenvalue de
omposition of Σ̃. That means� Σ̃ and Σ̂ have the same Eigenve
tors (
olumns of V)� extreme eigenvalues (large or small) are modi�ed (shrunk or elongated) to-wards the average λ.� γ = 0 yields unregularized LDA, γ = 1 assumes spheri
al 
ovarian
e matri-
es.Using LDA with su
h modi�ed 
ovarian
e matrix is termed regularized LDA. Theparameter γ needs to be estimated from training data, e.g. by 
ross validation.
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Fig. 4. Left: Data points drawn from a Gaussian distribution (gray dots; d = 200dimensions) with true 
ovarian
e matrix indi
ated by an ellipsoid in solid line, andestimated 
ovarian
e matrix in dashed line. Right: Eigenvalue spe
trum of a given
ovarian
e matrix (bold line) and eigenvalue spe
tra of 
ovarina
e matri
es estimatedfrom a �nite number of samples drawn (N= 50, 100, 200, 500) from a 
orrespondingGaussian distribution.3 BBCI Control Using Motor Paradigms3.1 High Information Transfer RatesIn order to preserve e
ologi
al validity (i.e., the 
orresponden
e between inten-tion and 
ontrol e�e
t) we let the users perform motor tasks for appli
ations like
ursor movements. For paralyzed patients the 
ontrol task is to attempt move-ments (e.g., left hand or right hand or foot), other subje
ts are instru
ted toperform kinestheti
ally imagined movements ([42℄) or quasi-movements ([43℄).As a test appli
ation of the performan
e of our BBCI system we implementeda 1D 
ursor 
ontrol. One of the two �elds on the left and right edge of the s
reenwas highlighted as target at the beginning of a trial, see Fig. 5. The 
ursor wasinitially at the 
enter of the s
reen and started moving a

ording to the BBCI
lassi�er output about half a se
ond after the indi
ation of the target. The trialended when the 
ursor tou
hed one of the two �elds. That �eld was then 
oloredgreen or red, depending on whether or not it was the 
orre
t target. After ashort period the next target 
ue was presented (see [8,44℄ for more details).The aim of our �rst feedba
k study was to explore the limits of possibleinformation transfer rates (ITRs) in BCI systems not relying on user trainingor evoked potentials. The ITR derived in Shannon's information theory 
an beused to quantify the information 
ontent, whi
h is 
onveyed through a noisy(i.e., error introdu
ing) 
hannel. In BCI 
ontext:bitrate(p,N) =

(

p log
2
(p) + (1 − p) log

2

(

1 − p

N − 1

)

+ log
2
(N)

) (1)
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ms msmsa a+x a+x+bFig. 5. Course of a feedba
k trial. The target 
ue (�eld with 
rosshat
h) is indi
atedfor ams, where a is 
hosen individual a

ording to the 
apabilities of the user. Then the
ursor starts moving a

ording to the BCI 
lassi�er until it tou
hes one of the two �eldsat the edge of the s
reen. The duration depends on the performan
e and is thereforedi�erent in ea
h trial (xms). The tou
hed �eld is 
olored green or red a

ording towhether its was the 
orre
t target or not (for this bla
k and white reprodu
tion, the�eld is hat
hed with diagonal lines). After bms, the next trial starts, where b is 
hosenindivudally for the subje
t.where p is the a

ura
y of the subje
t in making de
isions between N targets,e.g., in the feedba
k explained above, N = 2 and p is the a

ura
y of hitting the
orre
t bars. To in
lude the speed of de
ision into the performan
e measure:ITR [bits/min℄ =
# of de
isionsduration in minutes · bitrate(p,N) (2)In this form, the ITR takes di�erent average trial durations (i.e., the speed ofde
isions) and di�erent number of 
lasses into a

ount. Therefore, it is often usedas a performan
e measure of BCI systems ([45℄). Note, that it gives reasonableresults only if some assumptions on the distribution of error are met, see [46℄.The subje
ts of the study ([8,14℄) were 6 sta� members, most of whi
h hadperformed feedba
k with earlier versions of the BBCI system before. (Later,the study was extended by 4 further subje
ts, see [44℄). First the parameters ofprepro
essing were sele
ted and a 
lassi�er was trained based on a 
alibrationmeasurement individually for ea
h subje
t. Then feedba
k was swit
hed on andfurther parameters of the feedba
k were adjusted a

ording to the subje
t'srequest.For one subje
t, no signi�
ant dis
rimination between the mental imagery
onditions was found, see [44℄ for an analysis of that spe
i�
 
ase. The other�ve subje
ts performed 8 runs of 25 
ursor 
ontrol trials as explained above.Table 1 shows the performan
e result in a

ura
y (per
entage of trials in whi
hthe subje
t hit the indi
ated target) and as ITR (see above). As a test of pra
ti
alusability, subje
t al operated a simple text entry system based on BBCI 
ursor
ontrol. In a free spelling mode, he spelled 3 German senten
es with a total of135 
hara
ters in 30 minutes, whi
h is a spelling speed of 4.5 letters per minutes.Note that the subje
t 
orre
ted all errors using the deletion symbol. For details,see [47℄. Re
ently, using the novel mental text entry system Hex-o-Spell whi
hwas developed in 
ooperation with the Human-Computer Intera
tion Group at



Table 1. Results of a feedba
k study with 6 healthy subje
ts (identi�
ation 
ode inthe �rst 
olumn). From the three 
lasses used in the 
alibration measurement the two
hosen for feedba
k are indi
ated in se
ond 
olumn (L: left hand, R: right hand, F:right foot). The a

ura
ies obtained online in 
ursor 
ontrol are given in 
olumn 3. Theaverage duration ± standard deviation of the feedba
k trials is provided in 
olumn 4(duration from 
ue presentation to target hit). Subje
ts are sorted a

ording to feedba
ka

ura
y. Columns 5 and 6 report the information transfer rates (ITR) measured inbits per minute as obtained by Shannon's formula, 
f. (1). Here the 
omplete durationof ea
h run was taken into a

ount, i.e., also the inter-trial breaks from target hit tothe presentation of the next 
ue. The 
olumn overall ITR (oITR) reports the averageITR of all runs (of 25 trials ea
h), while 
olumn peak ITR (pITR) reports the peakITR of all runs.subje
t 
lasses a

ura
y duration oITR pITR[%℄ [s℄ [b/m℄ [b/m℄al LF 98.0 ± 4.3 2.0 ± 0.9 24.4 35.4ay LR 95.0 ± 3.3 1.8 ± 0.8 22.6 31.5av LF 90.5 ±10.2 3.5 ± 2.9 9.0 24.5aa LR 88.5 ± 8.1 1.5 ± 0.4 17.4 37.1aw RF 80.5 ± 5.8 2.6 ± 1.5 5.9 11.0mean 90.5 ± 7.6 2.3 ± 0.8 15.9 27.9the University of Glasgow, the same subje
t a
hieved a spelling speed of morethan 7 letters per minute, 
f. [2,48℄.3.2 Good Performan
e without Subje
t TrainingThe goal of our se
ond feedba
k study was to investigate for what proportion ofnaive subje
ts our system 
ould provide su

essful feedba
k in the very �rst ses-sion ([49℄). The design of this study was similar to the one des
ribed above. Buthere the subje
ts were 14 individuals who never performed in a BCI experimentbefore. Furthermore the parameters of the feedba
k have been �xed beforehandfor all subje
ts to 
onservative values.For one subje
t no distinguishable 
lasses were identi�ed. The other 13 sub-je
ts performed feedba
k: 1 near 
han
e level, 3 with 70-80%, 6 with 80-90% and3 with 90-100% hits. The results of all feedba
ks runs are shown in Fig. 6.This 
learly shows that a ma
hine learning based approa
h to BCI su
h asthe BBCI is able to let BCI novi
es perform well from the �rst session. Note thatin all BCI studies � independent of whether ma
hine learning is used or not �non-performing subje
ts are en
ountered (e.g. [50℄). It is an open problem howto alleviate this issue.3.3 Automati
 Response Veri�
ationAn elegant approa
h to 
ope with BCI mis
lassi�
ations is a response 
he
kingme
hanism that is based on the subje
t's brain signals themselves. This ap-
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k a

ura
y of all runs (gray dots) and intra-subje
t averages (bla
k
rosses). Right: Histogram of a

ura
ies obtained in BBCI-
ontrolled 
ursor movementtask in all feedba
k runs of the study.proa
h was �rst explored in [51℄ in an o�ine analysis of BCI feedba
k data. Asimple amplitude threshold 
riterium for the dete
tion of error-related poten-tials was used to demonstrate the potential use of the approa
h. Several studieshave shown the possibility to dete
t error-related potentials in 
hoi
e rea
tiontasks ([16,52,53℄) with more advan
ed pattern re
ognition algorithms. The re-sults taken together give a 
lear indi
ation that a response veri�
ation might bea worthwhile add-on to BCIs in the following sense of a two-pass system. We
all the original 
lassi�
ation of the BCI feedba
k �rst-pass. Then in the se
ond-pass, the interval after the response feedba
k is subje
ted to the error potentialdete
tor. If that indi
ates that the user per
eived the feedba
k as an error, thede
ision is reje
ted4 . Surprisingly, so far no online BCI appli
ation with error-dete
tion was reported. Nevertheless, further important eviden
e was providedin [26,54℄ by showing the dete
ability of potentials eli
ited by intera
tion errorsin a simulated BCI. But due to the dis
rete feedba
k with �xed timing used inthat study, it remains open how the situation would be in a 
ontinuous 
ursor
ontrol feedba
k where an up
oming error might be anti
ipated by the users bypredi
tions about the 
ursor movement (e.g., no 
lassi
al phasi
 error-related
omponent might be eli
ited when the 
ursor starts moving slowly towards thewrong �eld).Fig. 7 shows the ERPs for 
orre
t and erroneous feedba
k trials with respe
tto time point t = 0 when the 
ursor enters either the 
orre
t or the wrong �eld(for the design of the feedba
k, see Fig. 5). In this subje
t the error-related pos-4In binary de
isions the out
ome 
ould even be reverted. But pra
ti
ally it wasobserved that su
h a strategy leads to less improvement if the error dete
tion itself isalso error prone ([54℄).
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orre
t and erroneous feedba
k trials. Right: Topography ofsigned r2 values for the time intervals of error-related negativity (110 to 150ms) anderror-related positivity (170 to 230ms).itivity as well as the error-related negativity is 
learly visible at fronto-
entraland parieto-
entral s
alp position. In other subje
ts often only the positive 
om-ponent was observed. It 
an be spe
ulated that the shorter negative 
omponentis obs
ured by the jitter on the time point of error re
ognition owing to thefeedba
k paradigm (see remark above). This issue is subje
t of an ongoing in-vestigation.In order to quantify the potential gain of an automati
 error reje
tion, we
al
ulate the bitrate of a two-pass BCI system as outlined above. Let tp be therate of true positives (erroneous trials, 
lassi�ed as errors) and tn the rate of truenegatives (
orre
t trials, 
lassi�ed as 
orre
t). Then we 
an 
al
ulated the bitrateof a system that reje
ts trials whi
h were 
lassi�ed as errors in the following way([54℄):
ra

epted = p tn + (1 − p)(1 − tp) rate of a

epted trials
pa

epted = p

tn

ra

epted a

ura
y on a

epted trialsbitraterv(p, tp, tn,N) = bitrate(pa

epted, N) (3)Fig. 8 shows the improvement in ITR that would have been a
hieved by usingthe response veri�
ation with reje
ting de
ision for trials whi
h were 
lassi�edas erroneous. The relative gain obtained through response veri�
ation is 80%on average for the worse performing subje
ts and 25% for better performingsubje
ts.4 Appli
ations of BBCI Te
hnologySubsequently we will dis
uss BBCI appli
ations for rehabilitation (prostheti

ontrol and spelling [2,3,48℄) and beyond (gaming, mental state monitoring [55,56℄ et
.). Our view is that the development of BCI to enhan
e man ma
hineintera
tion for the healthy will be an important step to broaden and strengthenthe future development of neurote
hnology.
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Fig. 8. Left: Bitrates (Eq. (1)) of original BCI 
lassi�
ation (thin line) and 
al
ulatedbitrates (Eq. (3)) for the 
ase that trials are reje
ted whi
h are 
lassi�ed as errorsby the error-potential dete
tor (thi
k line). Only those subje
ts are taken into thisinvestigation who 
ommitted at least 20 error and had above 
han
e performan
e.Right: Relative gain obtained through response veri�
ation. The mean for the worseperforming subje
ts is 80% and the mean for better performing subje
ts is 25%.4.1 Prostheti
 ControlMotor-intention based BCI o�ers the possibility of a dire
t and intuitive 
ontrolmodality for persons disabled by high-
ervi
al spinal 
ord injury, i.e., tetraplegi
s,whose 
ontrol of all limbs is severely impaired. The advantage of this type of BCIover other interfa
e modalities is that by dire
tly translating movement inten-tion into a 
ommand to a prosthesis, the link between 
orti
al a
tivity relatedto motor 
ontrol of the arm and physi
al a
tion is restored, thereby o�ering apossible rehabilitation fun
tion, as well as enhan
ed motivation fa
tor for dailyuse. Testing of this 
on
ept is the main idea driving the Brain2Robot proje
t(see A
knowledgement). However, two important 
hallenges must be fully metbefore non-invasive, EEG based motor imagery BCI 
an be pra
ti
ally used bythe disabled.One su
h 
hallenge is the 
umbersome nature of standard EEG set-up, in-volving appli
ation of gel, limited re
ording time, and subsequent removal of theset-up, whi
h involves washing the hair. It is unlikely that disabled persons, inneed of BCI te
hnology for greater autonomy, would adopt su
h a system. Mean-while, short of any invasive or minimally invasive re
ording modality, the onlyavailable option is the use of so 
alled `dry' ele
trodes, i.e. not requiring the useof 
ondu
tive gel or other liquids in su
h a way that ele
trode appli
ation andremoval takes pla
e in a matter of minutes. We have developed su
h te
hnology(a `dry 
ap') and tested it for motor-imagery based BCI [57℄. The 
ap requiredabout 5 minutes for set-up and exhibited an average of 70% of the informationtransfer rate a
hieved for the same subje
ts with respe
t to a standard EEG `gel
ap', the di�eren
e being most likely attributed to the use of 6 ele
trodes usedin the dry 
ap vs. 64 ele
trodes used in the gel 
ap. Although the lo
ations ofthe 6 ele
trodes were 
hosen judi
iously (by analyzing whi
h ele
trode positionsin the gel 
ap were most important, as expe
ted 3 ele
trodes over ea
h 
orti
al



motor area), some performan
e degradation was unavoidable and ne
essary � afull 64 ele
trode dry 
ap would also be 
umbersome.Another 
hallenge for EEG-BCI 
ontrol of prostheti
s is inherent safety. Thisis of paramount importan
e, whether the prostheti
 
ontrolled is an orthosis (aworn me
hani
al devi
e whi
h augments the fun
tion of a set of joints) or a robot(whi
h may move the paralysed arm or be near the body but unatta
hed to it,as in the 
ase of Brain2Robot), or even a neuroprosthesis, i.e. a system whi
hele
tri
ally a
tivates mus
les in the user's arm or peripheral neurons whi
h in-nervate these mus
les. Spe
i�
ally, the BCI interfa
e should not output spuriousor unintended a
tion 
ommands to the prostheti
 devi
e, as these 
ould 
auseinjuries, or even in the 
ase in whi
h the probability of injury is low and se
-ondary safety `es
ape 
ommands' are in
orporated, it may (reasonably) 
ausefear in the otherwise immobile user and therefore dis
ourage him or her from
ontinuing to use the system. Therefore we have looked at ne
essary enhan
e-ments to 
ommonly used `BCI feedba
k' 
ontrol whi
h 
ould in
orporate theuse of a `rest' or `idle' state, i.e. a 
ontinuous output of the 
lassi�er whi
h notonly outputs a 
ommand related to a trained brain state (say, imagination ofleft hand movement) but a `do nothing' 
ommand related to a state in whi
h theuser performs daily a
tivities unrelated to motor imagination (a `rest' or `idle'state) and in whi
h the prostheti
 should do nothing. Thus we have begun tolook at the trade-o� between speed of BCI (information transmission rate orITR) and safety (false positive rate) a
hievable by in
orporating a `
ontrol' law,whi
h is a di�erential equation whose inputs are 
ontinuous outputs of the 
las-sifer, in our 
ase a quadrati
-type 
lassi�er, and whose output is the 
ommandto the prostheti
 ([58℄). It remains to be seen how mu
h ea
h parti
ular subje
t,whose `standard' BCI performan
e varies greatly, must trade redu
ed speed forin
reased safety.A �nal impli
it goal of all BCI resear
h is to improve the maximally a
hiev-able ITR for ea
h type of brain imaging modality. In the 
ase of EEG the ITRis seems to be limited to about 1 de
ision every 2 se
onds ([44℄, fastest subje
tperformed at an average speed of 1 binary de
ision every 1.7 s) despite intensiveresear
h e�ort to improve it. In the 
ase of Brain2Robot further informationabout the desired endpoint of arm movement is obtained by 3D tra
king of gaze� eye movement and fo
us being normally inta
t in the tetraplegi
 population,and the a
hievable ITR is su�
ient, sin
e it lies in the range of the frequen
yof dis
rete rea
hing movements of the hand. However, 
ompeting issues of 
og-nitive load, safety and a
hievable dexterity 
an only be assessed by testing BCIfor prostheti
 
ontrol with the intended user group while paying attention to thelevel of disability and motor-related EEG patterns in ea
h subje
t, as both arelikely to vary signi�
antly.4.2 Time-
riti
al Appli
ations: Predi
tion of Up
oming MovementsIn time-
riti
al 
ontrol situations, BCI te
hnology might provide early dete
tionof rea
tive movements based on preparatory signals for the redu
tion of thetime span between the generation of an intention (or rea
tive movements) and
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Fig. 9. Left: Averaged readiness potential in spontaneous selfpa
ed (grey) and rea
tive(dark) �nger movements (with t = 0 at key press) for one subje
t. Right: Distributionof the 
ontinuous 
lassi�er output in both experimental settings.the onset of the intended te
hni
al operation (e.g. in driver-assisted measures forvehi
le safety). Through dete
tion of parti
ularly early readiness potentials (seeSe
tion 1.2) whi
h re�e
t the mental preparation of movements, 
ontrol a
tions
an be prepared or initiated before the a
tual movement and thus we intend tode
ode these signals in a very timely and a

urate manner.In order to explore the prospe
tive value of BCI for su
h appli
ations, we
ondu
ted a two alternative for
ed 
hoi
e experiment (d2-test), in whi
h thesubje
t had to respond as fast as possible with a left or right index �nger keypress, see [59℄. Fig. 9 (left) 
ompares the readiness potentials in su
h rea
tive�nger movements with those in selfpa
ed �nger movements (t = 0 for key press).Fig. 9 (right) shows the tra
es of 
ontinuous 
lassi�er output for rea
tive (uppersubplot) and selfpa
ed (lower subplot) �nger movements. As expe
ted, the dis-
rimination between up
oming left vs. right �nger movements is better possiblefor the self-pa
ed movements at an early stage, but towards the time point of keypress performan
e is similar. In parti
ular, 100ms before the keypress even formovements in fast reations, a separation be
omes substantial. The dis
riminabil-ity already at this point in time 
on�rms the potential value of BCI te
hnologyfor time-
riti
al appli
ations. For more details and 
lassi�
ation results, we referthe interested reader to [59℄.4.3 Neuro UsabilityIn the development of many new produ
ts or in the improvement of existingprodu
ts, usability studies play an important role. They are performed in orderto measure to what degree a produ
t meets the intended purpose with regardto the aspe
ts e�e
tiveness, e�
ien
y and user satisfa
tion.A further goal is toquantify the joy of use. While e�e
tiveness 
an be quanti�ed quite obje
tively,e.g., in terms of task 
ompletion, the other aspe
ts are more intri
ate to assess.Even psy
hi
 variables 
ons
iously una

essible to the persons themselves mightbe involved. Furthermore, in usability studies it is of interest to perform an



e�ortless 
ontinuous a
quistion of usability parameters whilst not requiring anya
tion on the side of the subje
t as this might interfer with the task at hand. Forthese reasons, BCI te
hnology 
ould be
ome a 
ru
ial tool for usability studiesin the future.We exemplify the potential bene�t of BCI te
hnology in one example ([55℄).Here, usability of new 
ar features is quanti�ed by the mental workload of the 
ardriver. In the 
ase of a devi
e that uses fan
y man-ma
hine interfa
e te
hnology,the produ
er should demonstrate that it does not distra
t the driver from thetra�
 (mental workload is not in
reased when the feature is used). In 
ase of atool for whi
h the manufa
turer 
laims it relieves the driver from workload (e.g.,automati
 distan
e 
ontrol), this e�e
t should be demonstrated as obje
tively aspossible.Sin
e there is no ground truth available on the 
ognitive workload to whi
hthe driver is exposed, we designed a study5 in whi
h additional workload was in-du
ed in a 
ontrolled manner. For details, please refer to [55℄. EEG was a
quiredfrom 12 male and 5 female subje
ts while driving on a highway at a speed of100 km/h (primary task). Se
ond, the subje
ts had an auditory rea
tion task:one of two buttons mounted on the left and right index �nger had to be hitevery 7.5 s a

ording to a given vo
al prompt. For the tertiary task, two dif-ferent 
onditions have been used. (a) mental 
al
ulation; (b) following one oftwo simultaneously broad
ast voi
e re
ordings. In a �rst a 
alibration phase, thedeveloped BBCI workload dete
tor was adapted to the individual driver. Afterthat, the system was able to predi
t the 
ognitive workload of the driver online.This information was used in the test phase to swit
h o� the auditory rea
tiontask, when high workload was dete
ted (`mitigation').As a result of the mitigation strategy, the average rea
tion time in the testphase was on average 100 ms faster than in the (un-mitigated) 
alibration phase([55℄). Sin
e in total the workload during the two phases has been equal, it 
anbe 
onje
tured that the average rea
tivity was the same. Thus, the di�eren
ein rea
tion times 
an only be explained by the fa
t that the workload dete
torswit
hed o� the rea
tion task during periods of redu
ed rea
tivity.Note, that the high intersubje
t variabiltiy, whi
h is a 
hallenge for manyBCI appli
ations 
omes as an advantage here: for neuro-usability studies, topsubje
ts (with respe
t to the dete
tability of relevant EEG 
omponents) of astudy 
an be sele
ted a

ording to the appropriateness of their brain signals.Beyond the neuro usability aspe
t of the study, one 
ould spe
ulate thatsu
h devi
es might be in
orporated in future 
ars in order to redu
e distra
tions(e.g., navigation system is swit
hed o� during periods of high workload) to aminimum when the drivers' brain is already over-loaded by other demands duringpotentially hazardous situations.5This study was performed in 
ooperation with the Daimler AG. For further infor-mation, please refer to [55℄.



4.4 Mental State MonitoringWhen aiming to optimize the design of user interfa
es or, more general, of a work�ow, the mental state of a user during the task exe
ution 
an provide usefulinformation. This information 
an not only be exploited for the improvement ofBCI appli
ations, but also for improving industrial produ
tion environments, theuser interfa
e of 
ars and for many other appli
ations. Examples of these mentalstates are the levels of arousal, fatigue, emotion, workload or other variableswhose brain a
tivity 
orrelates (at least partially) are amenable to measurement.The improvement of suboptimal user interfa
es redu
es the number of 
riti
almental states of the operators. Thus it 
an lead to an in
rease in produ
tionyield, less errors and a

idents, and avoids frustration of the users.Typi
ally, information 
olle
ted about the mental states of interest is ex-ploited in an o�ine analysis of the data and leads to a re-design of the task orthe interfa
e. In addition, it might be desirable that a method for mental statemonitoring 
an be applied online during the exe
ution of a task. Traditionalmethods for 
apturing mental states and user ratings are questionnaires, videosurveillan
e of the task, or the analysis of errors made by the operator. Howeverquestionnaires are of limited use for pre
isely assessing the information of inter-est as the delivered answers are often distorted by subje
tiveness. Questionnaires
annot determine the quantities of interest in real-time (during the exe
ution ofthe task) but only in retrospe
t; moreover, they are intrusive i.e. they interferewith the task. Even the monitoring of eye blinks or eye movements only allowsfor an indire
t a

ess to the user's mental state. Although the monitoring of auser's errors is a more dire
t measure, it dete
ts 
riti
al 
hanges of the user statepost-ho
 only. Neither is the anti
ipation of an error possible, nor 
an suitable
ountermeasures be taken to avoid it.As a new approa
h we propose the use of EEG signals for mental state mon-itoring and 
ombine it with BBCI 
lass�
ation methods for data analysis. Withthis approa
h the brain signals of interest 
an be isolated from ba
kground a
tiv-ity as in BCI systems; this 
ombination allows for the non-intrusive evaluation ofmental states in real-time and on a single-trial basis su
h that an online systemwith feedba
k 
an be build.In a pilot study ([56℄) we evaluated the use of EEG signals for arousal moni-toring. The experimental setting simulates a se
urity surveillan
e system wherethe sustained 
on
entration ability of the user in a rather boring task is 
ru
ial.As in BCI, the system had to be 
alibrated to the individual user in order tore
ognize and predi
t mental states, 
orrelated with attention, task involvementor a high or low number of errors of the subje
t respe
tively.Experimental Setup for Attention Monitoring In this study a subje
twas seated approx. 1m in front of a 
omputer s
reen that displayed di�erentstimuli in a for
ed 
hoi
e setting. She was asked to respond qui
kly to stimuli bypressing keys of a keyboard with either the left or right index �nger; re
ordingwas done with a 128 
hannel EEG at 100Hz. The subje
t had to rate severalhundred x-ray images of luggage obje
ts as either dangerous or harmless by a



key press after ea
h presentation. The experiment was designed as an oddballparadigm where the number of the harmless obje
ts was mu
h larger than thatof the dangerous obje
ts. The terms standard and deviant will subsequently beused for the two 
onditions. One trial was usually performed within 0.5 se
ondsafter the 
ue presentation.The subje
t was asked to perform 10 blo
ks of 200 trials ea
h. Due to themonotonous nature of the task and the long duration of the experiment, thesubje
t was expe
ted to show a fading level of arousal whi
h results in worse
on
entration and the generation of more and more erroneous de
isions duringlater blo
ks.For the o�ine analysis of the 
olle
ted EEG signals, the following steps wereapplied. After ex
lusion of 
hannels with bad impedan
es a spatial Lapla
e �lterwas applied and the band power features from 8-13Hz were 
omputed on 2 swindows. The resulting band power values of all 
hannels were 
on
atenatedinto a �nal ve
tor. As the subje
t's 
orre
t and erroneous de
isions were known,a supervised LDA 
lassi�er was trained on the data. The 
lassi�
ation errorof this pro
edure was estimated by a 
ross-validation s
heme that left out awhole blo
k of 200 trials during ea
h fold for testing. As the number of folds wasdetermined by the number of experimental blo
ks it varied slightly from subje
tto subje
t.Results The erroneous de
isions taken by a subje
t were re
orded and smoothedin order to form a measure for the arousal. This measure is further referred toas error index and re�e
ts the ability of the subje
t to 
on
entrate and ful�llthe se
urity task. To enhan
e the 
ontrast of the dis
rimination analysis, twothresholds were introdu
ed for the error index and set after visual inspe
tion.Extreme trials outside these thresholds de�ned two sets of trials with a ratherhigh rsp. a low value. The EEG data of the trials were labeled as su�
iently
on
entrated or insu�
iently 
on
entrated depending on these thresholds forlater analysis. Fig. 10 shows the error index. The subje
t did perform nearlyerror-free during the �rst blo
ks but then showed in
reasing errors beginningwith blo
k 4. However, as the blo
ks were separated by short breaks, the subje
t
ould regain attention at the beginning of ea
h new blo
k at least for a smallnumber of trials. The trials of high and low error index formed the training datafor tea
hing a 
lassi�er to dis
riminate mental states of insu�
ient arousal basedon single trial EEG data.A so-
alled Con
entration Insu�
ien
y Index (CII) of a blo
k was generatedby an LDA 
lassi�er that had been trained o�-line on the labeled training dataof the remaining blo
ks. The 
lassi�er output (CII) of ea
h trial is plotted inFig. 10 together with the 
orresponding error index. It 
an be observed thatthe 
al
ulated CII mirrors the error index for most blo
ks. More pre
isely theCII mimi
s the error in
rease inside ea
h blo
k and in blo
ks 3 and 4 it 
ananti
ipate the in
rease of later blo
ks, i.e. out-of-sample. For those later blo
ksthe CII reveals that the subje
t 
ould not re
over its full arousal during the
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on
entration insu�
ien
y index (CII, dotted 
urve)and the error index for the subje
t. The error index (the true performed errors smoothedover time) re�e
ts the inverse of the arousal of the subje
t. Right : Correlation 
oe�
ientbetween the CII (returned by the 
lassi�er) and the true performan
e for di�erent timeshifts. Highest 
orrelation is around a zero time shift as expe
ted. Please note that theCII has an in
reased 
orrelation with the error even before the error appears.breaks. Instead it shows a short-time arousal for the time immediately after abreak, but the CII a

umulates over time.The 
orrelation 
oe�
ient of both time series with varying temporal delayis shown in the right plot of Fig. 10. The CII inferred by the 
lassi�er and theerrors that the subje
t had a
tually produ
ed 
orrelate strongly. Furthermorethe 
orrelation is high even for predi
tions that are up to 50 trials ahead intothe future.For a physiologi
al analysis please refer to the original paper [56℄.5 Con
lusionThe 
hapter provides a brief overview on the Berlin Brain-Computer Interfa
e.We would like to emphasize that the use of modern ma
hine learning tools �as put forward by the BBCI group � is pivotal for a su

essful and high ITRoperation of a BCI from the �rst session [44,49℄. Note that due to spa
e limi-tations the 
hapter 
an only dis
uss general prin
iples of signal pro
essing andma
hine learning for BCI; for details ample referen
es are provided (see also [3℄).Our main emphasis was to dis
uss the wealth of appli
ations of neurote
hnologybeyond rehabilitation. While BCI is an established tool for opening a 
ommuni-
ation 
hannel for the severely disabled ([60�64℄, its potential as an instrumentfor enhan
ing man-ma
hine intera
tion is underestimated. The use of BCI te
h-nology as a dire
t 
hannel additional to existing means to 
ommuni
ate opensappli
ations in mental state monitoring [55,56℄, gaming [65,66℄, virtual environ-ment navigation[67℄, vehi
le safety [55℄, rapid image viewing [68℄ and enhan
eduser modeling. To date only proofs of 
on
ept and �rst steps have been giventhat still need to move a long way to innovative produ
ts, but already the atten-tion monitoring and neuro usability appli
ations outlined in Se
tion 4.3 and 4.4show the usefulness of neurote
hnology for the monitoring of 
omplex 
ognitivemental states. With our novel te
hnique at hand, we 
an make dire
t use ofmental state monitoring information to enable Human-Ma
hine Intera
tion toexhibit adaptive anti
ipatory behaviour.



To ultimately su

eed in these promising appli
ations the BCI �eld needsto pro
eed in multiple aspe
ts: (a) improvement of EEG te
hnology beyond gelele
trodes and (e.g. [57℄) towards 
heap and portable devi
es, (b) understandingof the BCI-illiterates phenomenon, (
) improved and more robust signal pro
ess-ing and ma
hine learning methods, (d) higher ITRs for non-invasive devi
es and�nally (e) the development of 
ompelling industrial appli
ations also outside therealm of rehabilitation.A
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