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3 Campus Benjamin Franklin, Charité University Mediine Berlin, Germany1 IntrodutionThe Berlin Brain-Computer Interfae (BBCI) uses a mahine learning approahto extrat subjet-spei� patterns from high-dimensional EEG-features opti-mized for revealing the user's mental state. Classial BCI appliation are brainatuated tools for patients suh as prostheses (see Setion 4.1) or mental textentry systems ([2℄ and see [3�6℄ for an overview on BCI). In these appliationsthe BBCI uses natural motor ompetenes of the users and spei�ally tailoredpattern reognition algorithms for deteting the user's intent. But beyond reha-bilitation, there is a wide range of possible appliations in whih BCI tehnologyis used to monitor other mental states, often even overt ones (see also [7℄ in thefMRI realm). While this �eld is still largely unexplored, two examples from ourstudies are exempli�ed in Setion 4.3 and 4.4.1.1 The Mahine Learning ApproahThe advent of mahine learning (ML) in the �eld of BCI has led to signi�antadvanes in real-time EEG analysis. While early EEG-BCI e�orts required neu-rofeedbak training on the part of the user that lasted on the order of days, inML-based systems it su�es to ollet examples of EEG signals in a so-alledalibration measurement during whih the user is ued to perform repeatedlyanyone of a small set of mental tasks. This data is used to adapt the system tothe spei� brain signals of eah user (mahine training). This step of adaptionseems to be instrumental for e�etive BCI performane due to a large inter-subjet variability with respet to the brain signals ([8℄). After this preparationstep, whih is very short ompared to the subjet training in the operant on-ditioning approah ([9,10℄), the feedbak appliation an start. Here, the usersan atually transfer information through their brain ativity and ontrol appli-ations. In this phase, the system is omposed of the lassi�er that disriminatesbetween di�erent mental states and the ontrol logi that translates the lassi�eroutput into ontrol signals, e.g., ursor position or seletion from an alphabet.
∗This paper is a opy of the manusript submitted to appear as [1℄.
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Fig. 1. Overview of the mahine-learning-based BCI system. The system runs in twophases. In the alibration phase, we instrut the subjets to perform ertain tasks andollet short segments of labeled EEG (trials). We train the lassi�er based on theseexamples. In the feedbak phase, we take sliding windows from ontinuous stream ofEEG; the lassi�er outputs a real value that quanti�es the likeliness of lass member-ship; we run a feedbak appliation that takes the output of the lassi�er as input.Finally the subjet reeives the feedbak on the sreen as, e.g., ursor ontrol.An overview of the whole proess in an ML-based BCI is skethed in Fig. 1.Note that in alternative appliations of BCI tehnology (see Setion 4.3 and4.4), the alibration may need novel nonstandard paradigms, as the sought-aftermental states (like lak of onentration, spei� emotions, workload) might bedi�ult to indue in a ontrolled manner.1.2 Neurophysiologial FeaturesReadiness Potential Event-related potentials (ERPs) are transient brain re-sponses that are time-loked to some event. This event may be an externalsensory stimulus or an internal state signal, assoiated with the exeution ofa motor, ognitive, or psyhophysiologi task. Due to simultaneous ativity ofmany soures in the brain, ERPs are typially not visible in single trials (i.e.,the segment of EEG related to one event) of raw EEG. For investigating ERPs,EEG is aquired during many repetitions of the event of interest. Then shortsegments (alled epohs or trials) are ut out from the ontinuous EEG signalsaround eah event and are averaged aross epohs to redue event-unrelated
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EMGFig. 2. Response averaged event-related potentials (ERPs) of a right-handed subjetin a left vs. right hand �nger tapping experiment (N =275 resp. 283 trials per lass).Finger movements were exeuted in a self-paed manner, i.e., without any externalue, using an approximate inter-trial interval of 2 seonds. The two salp plots showthe topographial mapping of salp potentials averaged within the interval -220 to -120ms relative to keypress (time interval vertially shaded in the ERP plots; initialhorizontal shading indiates the baseline period). Larger rosses indiate the positionof the eletrodes CCP3 and CCP4 for whih the ERP time ourse is shown in thesubplots at both sides. For omparison time ourses of EMG ativity for left and right�nger movements are added. EMG ativity starts after -120ms and reahes a peak of70µV at -50ms. The readiness potential is learly visible, a predominantly ontralateralnegativation starting about 600ms before movement and raising approximately untilEMG onset.bakground ativity. In BCI appliations based on ERPs, the hallenge is todetet ERPs in single trials.The readiness potential (RP, or Bereitshaftspotential) is an ERP that re-�ets the intention to move a limb, and therefore preedes the physial (mus-ular) initiation of movements. In the EEG it an be observed as a pronounedortial negativation with a fous in the orresponding motor area. In handmovements the RP is foussed in the entral area ontralateral to the perform-ing hand, f. [11�13℄ and referenes therein for an overview. See Fig. 2 for anillustration. Setion 4.2 shows an appliation of BCI tehnology using the readi-ness potential. Further details about our BCI-related studies involving RP anbe found in [8,14�16℄.Sensorimotor Rhythms Apart from transient omponents, EEG omprisesrhythmi ativity loated over various areas. Most of these rhythms are so-alledidle rhythms, whih are generated by large populations of neurons in the respe-tive ortex that �re in rhythmial synhrony when they are not engaged in aspei� task. Over motor and sensorimotor areas in most subjets osillationswith a fundamental frequeny between 9 and 13Hz an be observed, the soalled µ-rhythm. Due to its omb-shape, the µ-rhythm is omposed of severalharmonis, i.e., omponents of double and sometimes also triple the fundamentalfrequeny ([17℄) with a �xed phase synhronization, f. [18℄. These sensorimotorrhythms (SMRs) are attenuated when engagement with the respetive limb takes



plae. As this e�et is due to loss of synhrony in the neural populations, it istermed event-related desynhronization (ERD), see [19℄. The inrease of osil-latory EEG (i.e., the reestablishment of neuronal synhrony after the event) isalled event-related synhronization (ERS). The ERD in the motor and/or sen-sory ortex an be observed even when a subjet is only thinking of a movementor imagining a sensation in the spei� limb. The strength of the sensorimo-tor idle rhythms as measured by salp EEG is known to vary strongly betweensubjets.Setion 3.1 and 3.2 show results of BCI ontrol exploiting the voluntarymodulation of sensorimotor rhythm.Error-Related Potentials It is a well-known �nding in human psyhophysisthat a subjet's reognition of having ommitted a response error is aom-pagnied by spei� EEG variations that an be observed in (averaged) ERPs(e.g. [20℄). The ERP after an error trial is haraterized by two omponents:a negative wave alled error negativity (NE) [21℄ (or error-related negativity(ERN, [22℄)) and a following broader positive peak labeled as error positivity(PE), [20℄. It has been demonstrated that the PE is more spei� to errors whilethe NE an also be observed in orret trials, f. [20℄, [23℄. Although both am-plitude and lateny depend on the spei� task, the NE ours delayed and lessintense in orret trials than in error trials. The NE is also eliited by negativefeedbak ([24℄) and by error observation ([25℄). Furthermore [26℄ investigatederror-related potentials in response to errors that are made by an interfae inhuman-omputer interation.Setion 3.3 investigates the detetability of error-related potentials after er-roneous BCI feedbak, whih gives a perspetive of the potential use in BCIsystems as a `seond-pass' response veri�ation.2 Proessing and Mahine Learning TehniquesDue to the simlutaneous ativity of many soures in the brain and additionalin�uene by noise the detetion of relevant omponents of brain ativity in singletrials as required for BCIs is a data analytial hallenge. One approah to om-pensate for the missing opportunity to average aross trials is to reord brainativity from many sensors and to exploit the multi-variateness of the aquiredsignals, i.e., to average aross spae in an intelligent way. Raw EEG salp po-tentials are known to be assoiated with a large spatial sale owing to volumneondution ([27℄). Aordingly all EEG hannels are highly orrelated and pow-erful spatial �lters are required to extrat loalized information with a goodsignal to noise ratio (see also the motivation for the need of spatial �ltering in[28℄).In the ase of deteting ERPs, suh as RP or error-related potentials, the ex-tration of features from one soure is mostly done by linear proessing methods.In this ase the spatial �ltering an be aomplished impliitly in the lassi�ation



step (interhangability of linear proessing steps). For the detetion of modula-tions of SMRs, the proessing is non-linear (e.g. alulation of band power). Inthis ase, the prior appliation of spatial �ltering is extremely bene�ial. Themethods used for BCIs range from simple �xed �lters like Laplaians ([29℄), anddata driven unsupervised tehniques like independent omponent analysis (ICA)[30℄ or model based approahes ([31℄) to data driven supervised tehniques likeommon spatial patterns analysis (CSP) [28℄.In this Setion we summarize the two tehniques that we onsider most im-portant for lassifying multi-variate EEG signals, CSP and regularized lineardisriminant analysis. For a more omplete and detailed review of signal pro-essing and pattern reognition tehniques see [8,32,33℄.2.1 Common Spatial Patterns AnalysisThe CSP tehnique (see [34℄) allows to determine spatial �lters that maximize thevariane of signals of one ondition and at the same time minimize the variane ofsignals of another ondition. Sine variane of band-pass �ltered signals is equalto band-power, CSP �lters are well suited to detet amplitude modulations ofsensorimotor rhythms (see Setion 1.2) and onsequently to disriminate mentalstates that are haraterized by ERD/ERS e�ets. As suh it has been well usedin BCI systems ([14,35℄) where CSP �lters are alulated individually for eahsubjet on the data of a alibration measurement.The CSP tehnique deomposes multihannel EEG signals in the sensorspae. The number of spatial �lters equals the number of hannels of the originaldata. Only few �lters have properties that make them favorable of lassi�ation.The disriminative value of a CSP �lter is quanti�ed by its generalized eigen-value. This eigenvalue is relative to the sum of the varianes in both onditions.An eigenvalue of 0.9 for lass 1 means an average ratio of 9:1 of varianes duringondition 1 and 2. See Fig. 3 for an illustration of CSP �ltering.For details on the tehnique of CSP analysis and its extensions we refer to([28,36�39℄).2.2 Regularized Linear Classi�ationFor known Gaussian distributions with the same ovariane matrix for all lasses,it an be shown that Linear Disriminant Analysis (LDA) is the optimal lassi-�er in the sense that it minimizes the risk of mislassi�ation for new samplesdrawn from the same distributions ([40℄). Note that LDA is equivalent to FisherDisriminant and Least Squares Regression ([40℄). For EEG lassi�ation theassumption of Gaussianity an be ahieved rather well by appropriate prepro-essing of the data. But the mean and ovariane matrix of the distributionshave to be estimated from the data, sine the true distributions are not known.Espeially for high-dimensional data with few trials the estimation of the o-variane matrix is very impreise, beause the number of unknown parametersis quadrati in the number of dimensions. In the estimation of ovariane matri-es this leads to a systemati error: Large eigenvalues of the original ovariane
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Fig. 3. The input the CSP analysis are (band-pass �ltered) multi-hannel EEG signalswhih are reorded for two onditions (here `left' and `right' hand motor imagery. Thereults of CSP analysis is a sequene of spatial �lters. The number of �lters (here N) isequal to the number of EEG hannels. When these �lters are applied to the ontinuousEEG signals, the (average) relative variane in the two onditions is given by theeigenvalues. An eigenvalue near 1 results in large variane of signals of ondition 1 andan eigenvalue near 0 reults in small variane for ondition 1. Most eigenvalues are near
0.5 suh that the orresponding �lters do not ontribute to the disrimination.matrix are estimated too large, and small eigenvalues are estimated too small,see Fig. 4. This error in the estimation degrades lassi�ation performane (andinvalidates the optimality statement for LDA). A ommon remedy for the sys-temti bias, is shrinkage of the estimated ovariane matries (e.g. [41℄):The estimator of the ovariane matrix Σ̂ is replaed by

Σ̃ = (1 − γ)Σ̂ + γλIfor a γ ∈ [0, 1] and λ de�ned as average eigenvalue trace(Σ̂)/d with d beingthe dimensionality of the feature spae and I being the identity matrix.. Thenthe following holds. Sine Σ̂ is positive semi-de�nite we an have an eigenvaluedeomposition Σ̂ = VDV
⊤ with orthonormal V and diagonal D. Due to theorthogonality of V we get

Σ̃ = (1−γ)VDV
⊤+γλI = (1−γ)VDV

⊤+γλVIV
⊤ = V ((1 − γ)D + γλI)V⊤as eigenvalue deomposition of Σ̃. That means� Σ̃ and Σ̂ have the same Eigenvetors (olumns of V)� extreme eigenvalues (large or small) are modi�ed (shrunk or elongated) to-wards the average λ.� γ = 0 yields unregularized LDA, γ = 1 assumes spherial ovariane matri-es.Using LDA with suh modi�ed ovariane matrix is termed regularized LDA. Theparameter γ needs to be estimated from training data, e.g. by ross validation.
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Fig. 4. Left: Data points drawn from a Gaussian distribution (gray dots; d = 200dimensions) with true ovariane matrix indiated by an ellipsoid in solid line, andestimated ovariane matrix in dashed line. Right: Eigenvalue spetrum of a givenovariane matrix (bold line) and eigenvalue spetra of ovarinae matries estimatedfrom a �nite number of samples drawn (N= 50, 100, 200, 500) from a orrespondingGaussian distribution.3 BBCI Control Using Motor Paradigms3.1 High Information Transfer RatesIn order to preserve eologial validity (i.e., the orrespondene between inten-tion and ontrol e�et) we let the users perform motor tasks for appliations likeursor movements. For paralyzed patients the ontrol task is to attempt move-ments (e.g., left hand or right hand or foot), other subjets are instruted toperform kinesthetially imagined movements ([42℄) or quasi-movements ([43℄).As a test appliation of the performane of our BBCI system we implementeda 1D ursor ontrol. One of the two �elds on the left and right edge of the sreenwas highlighted as target at the beginning of a trial, see Fig. 5. The ursor wasinitially at the enter of the sreen and started moving aording to the BBCIlassi�er output about half a seond after the indiation of the target. The trialended when the ursor touhed one of the two �elds. That �eld was then oloredgreen or red, depending on whether or not it was the orret target. After ashort period the next target ue was presented (see [8,44℄ for more details).The aim of our �rst feedbak study was to explore the limits of possibleinformation transfer rates (ITRs) in BCI systems not relying on user trainingor evoked potentials. The ITR derived in Shannon's information theory an beused to quantify the information ontent, whih is onveyed through a noisy(i.e., error introduing) hannel. In BCI ontext:bitrate(p,N) =
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ms msmsa a+x a+x+bFig. 5. Course of a feedbak trial. The target ue (�eld with rosshath) is indiatedfor ams, where a is hosen individual aording to the apabilities of the user. Then theursor starts moving aording to the BCI lassi�er until it touhes one of the two �eldsat the edge of the sreen. The duration depends on the performane and is thereforedi�erent in eah trial (xms). The touhed �eld is olored green or red aording towhether its was the orret target or not (for this blak and white reprodution, the�eld is hathed with diagonal lines). After bms, the next trial starts, where b is hosenindivudally for the subjet.where p is the auray of the subjet in making deisions between N targets,e.g., in the feedbak explained above, N = 2 and p is the auray of hitting theorret bars. To inlude the speed of deision into the performane measure:ITR [bits/min℄ =
# of deisionsduration in minutes · bitrate(p,N) (2)In this form, the ITR takes di�erent average trial durations (i.e., the speed ofdeisions) and di�erent number of lasses into aount. Therefore, it is often usedas a performane measure of BCI systems ([45℄). Note, that it gives reasonableresults only if some assumptions on the distribution of error are met, see [46℄.The subjets of the study ([8,14℄) were 6 sta� members, most of whih hadperformed feedbak with earlier versions of the BBCI system before. (Later,the study was extended by 4 further subjets, see [44℄). First the parameters ofpreproessing were seleted and a lassi�er was trained based on a alibrationmeasurement individually for eah subjet. Then feedbak was swithed on andfurther parameters of the feedbak were adjusted aording to the subjet'srequest.For one subjet, no signi�ant disrimination between the mental imageryonditions was found, see [44℄ for an analysis of that spei� ase. The other�ve subjets performed 8 runs of 25 ursor ontrol trials as explained above.Table 1 shows the performane result in auray (perentage of trials in whihthe subjet hit the indiated target) and as ITR (see above). As a test of pratialusability, subjet al operated a simple text entry system based on BBCI ursorontrol. In a free spelling mode, he spelled 3 German sentenes with a total of135 haraters in 30 minutes, whih is a spelling speed of 4.5 letters per minutes.Note that the subjet orreted all errors using the deletion symbol. For details,see [47℄. Reently, using the novel mental text entry system Hex-o-Spell whihwas developed in ooperation with the Human-Computer Interation Group at



Table 1. Results of a feedbak study with 6 healthy subjets (identi�ation ode inthe �rst olumn). From the three lasses used in the alibration measurement the twohosen for feedbak are indiated in seond olumn (L: left hand, R: right hand, F:right foot). The auraies obtained online in ursor ontrol are given in olumn 3. Theaverage duration ± standard deviation of the feedbak trials is provided in olumn 4(duration from ue presentation to target hit). Subjets are sorted aording to feedbakauray. Columns 5 and 6 report the information transfer rates (ITR) measured inbits per minute as obtained by Shannon's formula, f. (1). Here the omplete durationof eah run was taken into aount, i.e., also the inter-trial breaks from target hit tothe presentation of the next ue. The olumn overall ITR (oITR) reports the averageITR of all runs (of 25 trials eah), while olumn peak ITR (pITR) reports the peakITR of all runs.subjet lasses auray duration oITR pITR[%℄ [s℄ [b/m℄ [b/m℄al LF 98.0 ± 4.3 2.0 ± 0.9 24.4 35.4ay LR 95.0 ± 3.3 1.8 ± 0.8 22.6 31.5av LF 90.5 ±10.2 3.5 ± 2.9 9.0 24.5aa LR 88.5 ± 8.1 1.5 ± 0.4 17.4 37.1aw RF 80.5 ± 5.8 2.6 ± 1.5 5.9 11.0mean 90.5 ± 7.6 2.3 ± 0.8 15.9 27.9the University of Glasgow, the same subjet ahieved a spelling speed of morethan 7 letters per minute, f. [2,48℄.3.2 Good Performane without Subjet TrainingThe goal of our seond feedbak study was to investigate for what proportion ofnaive subjets our system ould provide suessful feedbak in the very �rst ses-sion ([49℄). The design of this study was similar to the one desribed above. Buthere the subjets were 14 individuals who never performed in a BCI experimentbefore. Furthermore the parameters of the feedbak have been �xed beforehandfor all subjets to onservative values.For one subjet no distinguishable lasses were identi�ed. The other 13 sub-jets performed feedbak: 1 near hane level, 3 with 70-80%, 6 with 80-90% and3 with 90-100% hits. The results of all feedbaks runs are shown in Fig. 6.This learly shows that a mahine learning based approah to BCI suh asthe BBCI is able to let BCI novies perform well from the �rst session. Note thatin all BCI studies � independent of whether mahine learning is used or not �non-performing subjets are enountered (e.g. [50℄). It is an open problem howto alleviate this issue.3.3 Automati Response Veri�ationAn elegant approah to ope with BCI mislassi�ations is a response hekingmehanism that is based on the subjet's brain signals themselves. This ap-
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raepted = p tn + (1 − p)(1 − tp) rate of aepted trials
paepted = p

tn

raepted auray on aepted trialsbitraterv(p, tp, tn,N) = bitrate(paepted, N) (3)Fig. 8 shows the improvement in ITR that would have been ahieved by usingthe response veri�ation with rejeting deision for trials whih were lassi�edas erroneous. The relative gain obtained through response veri�ation is 80%on average for the worse performing subjets and 25% for better performingsubjets.4 Appliations of BBCI TehnologySubsequently we will disuss BBCI appliations for rehabilitation (prosthetiontrol and spelling [2,3,48℄) and beyond (gaming, mental state monitoring [55,56℄ et.). Our view is that the development of BCI to enhane man mahineinteration for the healthy will be an important step to broaden and strengthenthe future development of neurotehnology.
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Fig. 8. Left: Bitrates (Eq. (1)) of original BCI lassi�ation (thin line) and alulatedbitrates (Eq. (3)) for the ase that trials are rejeted whih are lassi�ed as errorsby the error-potential detetor (thik line). Only those subjets are taken into thisinvestigation who ommitted at least 20 error and had above hane performane.Right: Relative gain obtained through response veri�ation. The mean for the worseperforming subjets is 80% and the mean for better performing subjets is 25%.4.1 Prostheti ControlMotor-intention based BCI o�ers the possibility of a diret and intuitive ontrolmodality for persons disabled by high-ervial spinal ord injury, i.e., tetraplegis,whose ontrol of all limbs is severely impaired. The advantage of this type of BCIover other interfae modalities is that by diretly translating movement inten-tion into a ommand to a prosthesis, the link between ortial ativity relatedto motor ontrol of the arm and physial ation is restored, thereby o�ering apossible rehabilitation funtion, as well as enhaned motivation fator for dailyuse. Testing of this onept is the main idea driving the Brain2Robot projet(see Aknowledgement). However, two important hallenges must be fully metbefore non-invasive, EEG based motor imagery BCI an be pratially used bythe disabled.One suh hallenge is the umbersome nature of standard EEG set-up, in-volving appliation of gel, limited reording time, and subsequent removal of theset-up, whih involves washing the hair. It is unlikely that disabled persons, inneed of BCI tehnology for greater autonomy, would adopt suh a system. Mean-while, short of any invasive or minimally invasive reording modality, the onlyavailable option is the use of so alled `dry' eletrodes, i.e. not requiring the useof ondutive gel or other liquids in suh a way that eletrode appliation andremoval takes plae in a matter of minutes. We have developed suh tehnology(a `dry ap') and tested it for motor-imagery based BCI [57℄. The ap requiredabout 5 minutes for set-up and exhibited an average of 70% of the informationtransfer rate ahieved for the same subjets with respet to a standard EEG `gelap', the di�erene being most likely attributed to the use of 6 eletrodes usedin the dry ap vs. 64 eletrodes used in the gel ap. Although the loations ofthe 6 eletrodes were hosen judiiously (by analyzing whih eletrode positionsin the gel ap were most important, as expeted 3 eletrodes over eah ortial



motor area), some performane degradation was unavoidable and neessary � afull 64 eletrode dry ap would also be umbersome.Another hallenge for EEG-BCI ontrol of prosthetis is inherent safety. Thisis of paramount importane, whether the prostheti ontrolled is an orthosis (aworn mehanial devie whih augments the funtion of a set of joints) or a robot(whih may move the paralysed arm or be near the body but unattahed to it,as in the ase of Brain2Robot), or even a neuroprosthesis, i.e. a system whiheletrially ativates musles in the user's arm or peripheral neurons whih in-nervate these musles. Spei�ally, the BCI interfae should not output spuriousor unintended ation ommands to the prostheti devie, as these ould auseinjuries, or even in the ase in whih the probability of injury is low and se-ondary safety `esape ommands' are inorporated, it may (reasonably) ausefear in the otherwise immobile user and therefore disourage him or her fromontinuing to use the system. Therefore we have looked at neessary enhane-ments to ommonly used `BCI feedbak' ontrol whih ould inorporate theuse of a `rest' or `idle' state, i.e. a ontinuous output of the lassi�er whih notonly outputs a ommand related to a trained brain state (say, imagination ofleft hand movement) but a `do nothing' ommand related to a state in whih theuser performs daily ativities unrelated to motor imagination (a `rest' or `idle'state) and in whih the prostheti should do nothing. Thus we have begun tolook at the trade-o� between speed of BCI (information transmission rate orITR) and safety (false positive rate) ahievable by inorporating a `ontrol' law,whih is a di�erential equation whose inputs are ontinuous outputs of the las-sifer, in our ase a quadrati-type lassi�er, and whose output is the ommandto the prostheti ([58℄). It remains to be seen how muh eah partiular subjet,whose `standard' BCI performane varies greatly, must trade redued speed forinreased safety.A �nal impliit goal of all BCI researh is to improve the maximally ahiev-able ITR for eah type of brain imaging modality. In the ase of EEG the ITRis seems to be limited to about 1 deision every 2 seonds ([44℄, fastest subjetperformed at an average speed of 1 binary deision every 1.7 s) despite intensiveresearh e�ort to improve it. In the ase of Brain2Robot further informationabout the desired endpoint of arm movement is obtained by 3D traking of gaze� eye movement and fous being normally intat in the tetraplegi population,and the ahievable ITR is su�ient, sine it lies in the range of the frequenyof disrete reahing movements of the hand. However, ompeting issues of og-nitive load, safety and ahievable dexterity an only be assessed by testing BCIfor prostheti ontrol with the intended user group while paying attention to thelevel of disability and motor-related EEG patterns in eah subjet, as both arelikely to vary signi�antly.4.2 Time-ritial Appliations: Predition of Upoming MovementsIn time-ritial ontrol situations, BCI tehnology might provide early detetionof reative movements based on preparatory signals for the redution of thetime span between the generation of an intention (or reative movements) and
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Fig. 9. Left: Averaged readiness potential in spontaneous selfpaed (grey) and reative(dark) �nger movements (with t = 0 at key press) for one subjet. Right: Distributionof the ontinuous lassi�er output in both experimental settings.the onset of the intended tehnial operation (e.g. in driver-assisted measures forvehile safety). Through detetion of partiularly early readiness potentials (seeSetion 1.2) whih re�et the mental preparation of movements, ontrol ationsan be prepared or initiated before the atual movement and thus we intend todeode these signals in a very timely and aurate manner.In order to explore the prospetive value of BCI for suh appliations, weonduted a two alternative fored hoie experiment (d2-test), in whih thesubjet had to respond as fast as possible with a left or right index �nger keypress, see [59℄. Fig. 9 (left) ompares the readiness potentials in suh reative�nger movements with those in selfpaed �nger movements (t = 0 for key press).Fig. 9 (right) shows the traes of ontinuous lassi�er output for reative (uppersubplot) and selfpaed (lower subplot) �nger movements. As expeted, the dis-rimination between upoming left vs. right �nger movements is better possiblefor the self-paed movements at an early stage, but towards the time point of keypress performane is similar. In partiular, 100ms before the keypress even formovements in fast reations, a separation beomes substantial. The disriminabil-ity already at this point in time on�rms the potential value of BCI tehnologyfor time-ritial appliations. For more details and lassi�ation results, we referthe interested reader to [59℄.4.3 Neuro UsabilityIn the development of many new produts or in the improvement of existingproduts, usability studies play an important role. They are performed in orderto measure to what degree a produt meets the intended purpose with regardto the aspets e�etiveness, e�ieny and user satisfation.A further goal is toquantify the joy of use. While e�etiveness an be quanti�ed quite objetively,e.g., in terms of task ompletion, the other aspets are more intriate to assess.Even psyhi variables onsiously unaessible to the persons themselves mightbe involved. Furthermore, in usability studies it is of interest to perform an



e�ortless ontinuous aquistion of usability parameters whilst not requiring anyation on the side of the subjet as this might interfer with the task at hand. Forthese reasons, BCI tehnology ould beome a ruial tool for usability studiesin the future.We exemplify the potential bene�t of BCI tehnology in one example ([55℄).Here, usability of new ar features is quanti�ed by the mental workload of the ardriver. In the ase of a devie that uses fany man-mahine interfae tehnology,the produer should demonstrate that it does not distrat the driver from thetra� (mental workload is not inreased when the feature is used). In ase of atool for whih the manufaturer laims it relieves the driver from workload (e.g.,automati distane ontrol), this e�et should be demonstrated as objetively aspossible.Sine there is no ground truth available on the ognitive workload to whihthe driver is exposed, we designed a study5 in whih additional workload was in-dued in a ontrolled manner. For details, please refer to [55℄. EEG was aquiredfrom 12 male and 5 female subjets while driving on a highway at a speed of100 km/h (primary task). Seond, the subjets had an auditory reation task:one of two buttons mounted on the left and right index �nger had to be hitevery 7.5 s aording to a given voal prompt. For the tertiary task, two dif-ferent onditions have been used. (a) mental alulation; (b) following one oftwo simultaneously broadast voie reordings. In a �rst a alibration phase, thedeveloped BBCI workload detetor was adapted to the individual driver. Afterthat, the system was able to predit the ognitive workload of the driver online.This information was used in the test phase to swith o� the auditory reationtask, when high workload was deteted (`mitigation').As a result of the mitigation strategy, the average reation time in the testphase was on average 100 ms faster than in the (un-mitigated) alibration phase([55℄). Sine in total the workload during the two phases has been equal, it anbe onjetured that the average reativity was the same. Thus, the di�erenein reation times an only be explained by the fat that the workload detetorswithed o� the reation task during periods of redued reativity.Note, that the high intersubjet variabiltiy, whih is a hallenge for manyBCI appliations omes as an advantage here: for neuro-usability studies, topsubjets (with respet to the detetability of relevant EEG omponents) of astudy an be seleted aording to the appropriateness of their brain signals.Beyond the neuro usability aspet of the study, one ould speulate thatsuh devies might be inorporated in future ars in order to redue distrations(e.g., navigation system is swithed o� during periods of high workload) to aminimum when the drivers' brain is already over-loaded by other demands duringpotentially hazardous situations.5This study was performed in ooperation with the Daimler AG. For further infor-mation, please refer to [55℄.



4.4 Mental State MonitoringWhen aiming to optimize the design of user interfaes or, more general, of a work�ow, the mental state of a user during the task exeution an provide usefulinformation. This information an not only be exploited for the improvement ofBCI appliations, but also for improving industrial prodution environments, theuser interfae of ars and for many other appliations. Examples of these mentalstates are the levels of arousal, fatigue, emotion, workload or other variableswhose brain ativity orrelates (at least partially) are amenable to measurement.The improvement of suboptimal user interfaes redues the number of ritialmental states of the operators. Thus it an lead to an inrease in produtionyield, less errors and aidents, and avoids frustration of the users.Typially, information olleted about the mental states of interest is ex-ploited in an o�ine analysis of the data and leads to a re-design of the task orthe interfae. In addition, it might be desirable that a method for mental statemonitoring an be applied online during the exeution of a task. Traditionalmethods for apturing mental states and user ratings are questionnaires, videosurveillane of the task, or the analysis of errors made by the operator. Howeverquestionnaires are of limited use for preisely assessing the information of inter-est as the delivered answers are often distorted by subjetiveness. Questionnairesannot determine the quantities of interest in real-time (during the exeution ofthe task) but only in retrospet; moreover, they are intrusive i.e. they interferewith the task. Even the monitoring of eye blinks or eye movements only allowsfor an indiret aess to the user's mental state. Although the monitoring of auser's errors is a more diret measure, it detets ritial hanges of the user statepost-ho only. Neither is the antiipation of an error possible, nor an suitableountermeasures be taken to avoid it.As a new approah we propose the use of EEG signals for mental state mon-itoring and ombine it with BBCI lass�ation methods for data analysis. Withthis approah the brain signals of interest an be isolated from bakground ativ-ity as in BCI systems; this ombination allows for the non-intrusive evaluation ofmental states in real-time and on a single-trial basis suh that an online systemwith feedbak an be build.In a pilot study ([56℄) we evaluated the use of EEG signals for arousal moni-toring. The experimental setting simulates a seurity surveillane system wherethe sustained onentration ability of the user in a rather boring task is ruial.As in BCI, the system had to be alibrated to the individual user in order toreognize and predit mental states, orrelated with attention, task involvementor a high or low number of errors of the subjet respetively.Experimental Setup for Attention Monitoring In this study a subjetwas seated approx. 1m in front of a omputer sreen that displayed di�erentstimuli in a fored hoie setting. She was asked to respond quikly to stimuli bypressing keys of a keyboard with either the left or right index �nger; reordingwas done with a 128 hannel EEG at 100Hz. The subjet had to rate severalhundred x-ray images of luggage objets as either dangerous or harmless by a



key press after eah presentation. The experiment was designed as an oddballparadigm where the number of the harmless objets was muh larger than thatof the dangerous objets. The terms standard and deviant will subsequently beused for the two onditions. One trial was usually performed within 0.5 seondsafter the ue presentation.The subjet was asked to perform 10 bloks of 200 trials eah. Due to themonotonous nature of the task and the long duration of the experiment, thesubjet was expeted to show a fading level of arousal whih results in worseonentration and the generation of more and more erroneous deisions duringlater bloks.For the o�ine analysis of the olleted EEG signals, the following steps wereapplied. After exlusion of hannels with bad impedanes a spatial Laplae �lterwas applied and the band power features from 8-13Hz were omputed on 2 swindows. The resulting band power values of all hannels were onatenatedinto a �nal vetor. As the subjet's orret and erroneous deisions were known,a supervised LDA lassi�er was trained on the data. The lassi�ation errorof this proedure was estimated by a ross-validation sheme that left out awhole blok of 200 trials during eah fold for testing. As the number of folds wasdetermined by the number of experimental bloks it varied slightly from subjetto subjet.Results The erroneous deisions taken by a subjet were reorded and smoothedin order to form a measure for the arousal. This measure is further referred toas error index and re�ets the ability of the subjet to onentrate and ful�llthe seurity task. To enhane the ontrast of the disrimination analysis, twothresholds were introdued for the error index and set after visual inspetion.Extreme trials outside these thresholds de�ned two sets of trials with a ratherhigh rsp. a low value. The EEG data of the trials were labeled as su�ientlyonentrated or insu�iently onentrated depending on these thresholds forlater analysis. Fig. 10 shows the error index. The subjet did perform nearlyerror-free during the �rst bloks but then showed inreasing errors beginningwith blok 4. However, as the bloks were separated by short breaks, the subjetould regain attention at the beginning of eah new blok at least for a smallnumber of trials. The trials of high and low error index formed the training datafor teahing a lassi�er to disriminate mental states of insu�ient arousal basedon single trial EEG data.A so-alled Conentration Insu�ieny Index (CII) of a blok was generatedby an LDA lassi�er that had been trained o�-line on the labeled training dataof the remaining bloks. The lassi�er output (CII) of eah trial is plotted inFig. 10 together with the orresponding error index. It an be observed thatthe alulated CII mirrors the error index for most bloks. More preisely theCII mimis the error inrease inside eah blok and in bloks 3 and 4 it anantiipate the inrease of later bloks, i.e. out-of-sample. For those later bloksthe CII reveals that the subjet ould not reover its full arousal during the
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-100 100500-50Fig. 10. Left : Comparison of the onentration insu�ieny index (CII, dotted urve)and the error index for the subjet. The error index (the true performed errors smoothedover time) re�ets the inverse of the arousal of the subjet. Right : Correlation oe�ientbetween the CII (returned by the lassi�er) and the true performane for di�erent timeshifts. Highest orrelation is around a zero time shift as expeted. Please note that theCII has an inreased orrelation with the error even before the error appears.breaks. Instead it shows a short-time arousal for the time immediately after abreak, but the CII aumulates over time.The orrelation oe�ient of both time series with varying temporal delayis shown in the right plot of Fig. 10. The CII inferred by the lassi�er and theerrors that the subjet had atually produed orrelate strongly. Furthermorethe orrelation is high even for preditions that are up to 50 trials ahead intothe future.For a physiologial analysis please refer to the original paper [56℄.5 ConlusionThe hapter provides a brief overview on the Berlin Brain-Computer Interfae.We would like to emphasize that the use of modern mahine learning tools �as put forward by the BBCI group � is pivotal for a suessful and high ITRoperation of a BCI from the �rst session [44,49℄. Note that due to spae limi-tations the hapter an only disuss general priniples of signal proessing andmahine learning for BCI; for details ample referenes are provided (see also [3℄).Our main emphasis was to disuss the wealth of appliations of neurotehnologybeyond rehabilitation. While BCI is an established tool for opening a ommuni-ation hannel for the severely disabled ([60�64℄, its potential as an instrumentfor enhaning man-mahine interation is underestimated. The use of BCI teh-nology as a diret hannel additional to existing means to ommuniate opensappliations in mental state monitoring [55,56℄, gaming [65,66℄, virtual environ-ment navigation[67℄, vehile safety [55℄, rapid image viewing [68℄ and enhaneduser modeling. To date only proofs of onept and �rst steps have been giventhat still need to move a long way to innovative produts, but already the atten-tion monitoring and neuro usability appliations outlined in Setion 4.3 and 4.4show the usefulness of neurotehnology for the monitoring of omplex ognitivemental states. With our novel tehnique at hand, we an make diret use ofmental state monitoring information to enable Human-Mahine Interation toexhibit adaptive antiipatory behaviour.
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