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1 Introduction

The Berlin Brain-Computer Interface (BBCI) uses a machine learning approach
to extract subject-specific patterns from high-dimensional EEG-features opti-
mized for revealing the user’s mental state. Classical BCI application are brain
actuated tools for patients such as prostheses (see Section 4.1) or mental text
entry systems ([2] and see [3-6] for an overview on BCI). In these applications
the BBCI uses natural motor competences of the users and specifically tailored
pattern recognition algorithms for detecting the user’s intent. But beyond reha-
bilitation, there is a wide range of possible applications in which BCI technology
is used to monitor other mental states, often even covert ones (see also [7] in the
fMRI realm). While this field is still largely unexplored, two examples from our
studies are exemplified in Section 4.3 and 4.4.

1.1 The Machine Learning Approach

The advent of machine learning (ML) in the field of BCI has led to significant
advances in real-time EEG analysis. While early EEG-BCI efforts required neu-
rofeedback training on the part of the user that lasted on the order of days, in
ML-based systems it suffices to collect examples of EEG signals in a so-called
calibration measurement during which the user is cued to perform repeatedly
anyone of a small set of mental tasks. This data is used to adapt the system to
the specific brain signals of each user (machine training). This step of adaption
seems to be instrumental for effective BCI performance due to a large inter-
subject variability with respect to the brain signals ([8]). After this preparation
step, which is very short compared to the subject training in the operant con-
ditioning approach ([9,10]), the feedback application can start. Here, the users
can actually transfer information through their brain activity and control appli-
cations. In this phase, the system is composed of the classifier that discriminates
between different mental states and the control logic that translates the classifier
output into control signals, e.g., cursor position or selection from an alphabet.

*This paper is a copy of the manuscript submitted to appear as [1].
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Fig. 1. Overview of the machine-learning-based BCI system. The system runs in two
phases. In the calibration phase, we instruct the subjects to perform certain tasks and
collect short segments of labeled EEG (trials). We train the classifier based on these
examples. In the feedback phase, we take sliding windows from continuous stream of
EEG; the classifier outputs a real value that quantifies the likeliness of class member-
ship; we run a feedback application that takes the output of the classifier as input.
Finally the subject receives the feedback on the screen as, e.g., cursor control.

An overview of the whole process in an ML-based BCI is sketched in Fig. 1.
Note that in alternative applications of BCI technology (see Section 4.3 and
4.4), the calibration may need novel nonstandard paradigms, as the sought-after
mental states (like lack of concentration, specific emotions, workload) might be
difficult to induce in a controlled manner.

1.2 Neurophysiological Features

Readiness Potential Event-related potentials (ERPs) are transient brain re-
sponses that are time-locked to some event. This event may be an external
sensory stimulus or an internal state signal, associated with the execution of
a motor, cognitive, or psychophysiologic task. Due to simultaneous activity of
many sources in the brain, ERPs are typically not visible in single trials (i.e.,
the segment of EEG related to one event) of raw EEG. For investigating ERPs,
EEG is acquired during many repetitions of the event of interest. Then short
segments (called epochs or trials) are cut out from the continuous EEG signals
around each event and are averaged across epochs to reduce event-unrelated
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Fig. 2. Response averaged event-related potentials (ERPs) of a right-handed subject
in a left vs. right hand finger tapping experiment (N =275 resp. 283 trials per class).
Finger movements were executed in a self-paced manner, i.e., without any external
cue, using an approximate inter-trial interval of 2 seconds. The two scalp plots show
the topographical mapping of scalp potentials averaged within the interval -220 to -
120 ms relative to keypress (time interval vertically shaded in the ERP plots; initial
horizontal shading indicates the baseline period). Larger crosses indicate the position
of the electrodes CCP3 and CCP4 for which the ERP time course is shown in the
subplots at both sides. For comparison time courses of EMG activity for left and right
finger movements are added. EMG activity starts after -120 ms and reaches a peak of
70 14V at -50 ms. The readiness potential is clearly visible, a predominantly contralateral
negativation starting about 600 ms before movement and raising approximately until
EMG onset.

background activity. In BCI applications based on ERPs, the challenge is to
detect ERPs in single trials.

The readiness potential (RP, or Bereitschaftspotential) is an ERP that re-
flects the intention to move a limb, and therefore precedes the physical (mus-
cular) initiation of movements. In the EEG it can be observed as a pronounced
cortical negativation with a focus in the corresponding motor area. In hand
movements the RP is focussed in the central area contralateral to the perform-
ing hand, cf. [11-13] and references therein for an overview. See Fig. 2 for an
illustration. Section 4.2 shows an application of BCI technology using the readi-
ness potential. Further details about our BCl-related studies involving RP can
be found in [8,14-16].

Sensorimotor Rhythms Apart from transient components, EEG comprises
rhythmic activity located over various areas. Most of these rhythms are so-called
idle rhythms, which are generated by large populations of neurons in the respec-
tive cortex that fire in rhythmical synchrony when they are not engaged in a
specific task. Over motor and sensorimotor areas in most subjects oscillations
with a fundamental frequency between 9 and 13Hz can be observed, the so
called p-rhythm. Due to its comb-shape, the py-rhythm is composed of several
harmonics, i.e., components of double and sometimes also triple the fundamental
frequency ([17]) with a fixed phase synchronization, cf. [18]. These sensorimotor
rhythms (SMRs) are attenuated when engagement with the respective limb takes



place. As this effect is due to loss of synchrony in the neural populations, it is
termed event-related desynchronization (ERD), see [19]. The increase of oscil-
latory EEG (i.e., the reestablishment of neuronal synchrony after the event) is
called event-related synchronization (ERS). The ERD in the motor and/or sen-
sory cortex can be observed even when a subject is only thinking of a movement
or imagining a sensation in the specific limb. The strength of the sensorimo-
tor idle rhythms as measured by scalp EEG is known to vary strongly between
subjects.

Section 3.1 and 3.2 show results of BCI control exploiting the voluntary
modulation of sensorimotor rhythm.

Error-Related Potentials It is a well-known finding in human psychophysics
that a subject’s recognition of having committed a response error is accom-
pagnied by specific EEG variations that can be observed in (averaged) ERPs
(e.g. [20]). The ERP after an error trial is characterized by two components:
a negative wave called error negativity (Ng) [21] (or error-related negativity
(ERN, [22])) and a following broader positive peak labeled as error positivity
(Pg), [20]. It has been demonstrated that the Pg is more specific to errors while
the Ng can also be observed in correct trials, cf. [20], [23]. Although both am-
plitude and latency depend on the specific task, the Ng occurs delayed and less
intense in correct trials than in error trials. The Ng is also elicited by negative
feedback ([24]) and by error observation ([25]). Furthermore [26] investigated
error-related potentials in response to errors that are made by an interface in
human-computer interaction.

Section 3.3 investigates the detectability of error-related potentials after er-
roneous BCI feedback, which gives a perspective of the potential use in BCI
systems as a ‘second-pass’ response verification.

2 Processing and Machine Learning Techniques

Due to the simlutaneous activity of many sources in the brain and additional
influence by noise the detection of relevant components of brain activity in single
trials as required for BClIs is a data analytical challenge. One approach to com-
pensate for the missing opportunity to average across trials is to record brain
activity from many sensors and to exploit the multi-variateness of the acquired
signals, i.e., to average across space in an intelligent way. Raw EEG scalp po-
tentials are known to be associated with a large spatial scale owing to volumne
conduction ([27]). Accordingly all EEG channels are highly correlated and pow-
erful spatial filters are required to extract localized information with a good
signal to noise ratio (see also the motivation for the need of spatial filtering in
[28]).

In the case of detecting ERPs, such as RP or error-related potentials, the ex-
traction of features from one source is mostly done by linear processing methods.
In this case the spatial filtering can be acomplished implicitly in the classification



step (interchangability of linear processing steps). For the detection of modula-
tions of SMRs, the processing is non-linear (e.g. calculation of band power). In
this case, the prior application of spatial filtering is extremely beneficial. The
methods used for BCIs range from simple fixed filters like Laplacians ([29]), and
data driven unsupervised techniques like independent component analysis (ICA)
[30] or model based approaches ([31]) to data driven supervised techniques like
common spatial patterns analysis (CSP) [28].

In this Section we summarize the two techniques that we consider most im-
portant for classifying multi-variate EEG signals, CSP and regularized linear
discriminant analysis. For a more complete and detailed review of signal pro-
cessing and pattern recognition techniques see [8,32,33].

2.1 Common Spatial Patterns Analysis

The CSP technique (see [34]) allows to determine spatial filters that maximize the
variance of signals of one condition and at the same time minimize the variance of
signals of another condition. Since variance of band-pass filtered signals is equal
to band-power, CSP filters are well suited to detect amplitude modulations of
sensorimotor rhythms (see Section 1.2) and consequently to discriminate mental
states that are characterized by ERD/ERS effects. As such it has been well used
in BCI systems ([14,35]) where CSP filters are calculated individually for each
subject on the data of a calibration measurement.

The CSP technique decomposes multichannel EEG signals in the sensor
space. The number of spatial filters equals the number of channels of the original
data. Only few filters have properties that make them favorable of classification.
The discriminative value of a CSP filter is quantified by its generalized eigen-
value. This eigenvalue is relative to the sum of the variances in both conditions.
An eigenvalue of 0.9 for class 1 means an average ratio of 9:1 of variances during
condition 1 and 2. See Fig. 3 for an illustration of CSP filtering.

For details on the technique of CSP analysis and its extensions we refer to
([28,36-39]).

2.2 Regularized Linear Classification

For known Gaussian distributions with the same covariance matrix for all classes,
it can be shown that Linear Discriminant Analysis (LDA) is the optimal classi-
fier in the sense that it minimizes the risk of misclassification for new samples
drawn from the same distributions ([40]). Note that LDA is equivalent to Fisher
Discriminant and Least Squares Regression ([40]). For EEG classification the
assumption of Gaussianity can be achieved rather well by appropriate prepro-
cessing of the data. But the mean and covariance matrix of the distributions
have to be estimated from the data, since the true distributions are not known.
Especially for high-dimensional data with few trials the estimation of the co-
variance matrix is very imprecise, because the number of unknown parameters
is quadratic in the number of dimensions. In the estimation of covariance matri-
ces this leads to a systematic error: Large eigenvalues of the original covariance
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Fig. 3. The input the CSP analysis are (band-pass filtered) multi-channel EEG signals
which are recorded for two conditions (here ‘left’ and ‘right’ hand motor imagery. The
reults of CSP analysis is a sequence of spatial filters. The number of filters (here N) is
equal to the number of EEG channels. When these filters are applied to the continuous
EEG signals, the (average) relative variance in the two conditions is given by the
eigenvalues. An eigenvalue near 1 results in large variance of signals of condition 1 and
an eigenvalue near 0 reults in small variance for condition 1. Most eigenvalues are near
0.5 such that the corresponding filters do not contribute to the discrimination.

matrix are estimated too large, and small eigenvalues are estimated too small,
see Fig. 4. This error in the estimation degrades classification performance (and
invalidates the optimality statement for LDA). A common remedy for the sys-
temtic bias, is shrinkage of the estimated covariance matrices (e.g. [41]):

The estimator of the covariance matrix 3 is replaced by

S =(1-79) 4l

for a v € [0, 1] and X\ defined as average eigenvalue trace(¥)/d with d being
the dimensionality of the feature space and I being the identity matrix.. Then
the following holds. Since 3 is positive semi-definite we can have an eigenvalue
decomposition 3 = VDV with orthonormal V and diagonal D. Due to the
orthogonality of V we get

2 =(1-9) VDV 44AI = (1-9)VDV 4+ AVIV' =V ((1 =)D + ) V"
as eigenvalue decomposition of 3. That means

— 3 and X have the same Eigenvectors (columns of V)

— extreme eigenvalues (large or small) are modified (shrunk or elongated) to-
wards the average .

— 7 = 0 yields unregularized LDA, v = 1 assumes spherical covariance matri-
ces.

Using LDA with such modified covariance matrix is termed regularized LDA. The
parameter v needs to be estimated from training data, e.g. by cross validation.
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Fig.4. Left: Data points drawn from a Gaussian distribution (gray dots; d = 200
dimensions) with true covariance matrix indicated by an ellipsoid in solid line, and
estimated covariance matrix in dashed line. Right: Eigenvalue spectrum of a given
covariance matrix (bold line) and eigenvalue spectra of covarinace matrices estimated
from a finite number of samples drawn (N= 50, 100, 200, 500) from a corresponding
Gaussian distribution.

3 BBCI Control Using Motor Paradigms

3.1 High Information Transfer Rates

In order to preserve ecological validity (i.e., the correspondence between inten-
tion and control effect) we let the users perform motor tasks for applications like
cursor movements. For paralyzed patients the control task is to attempt move-
ments (e.g., left hand or right hand or foot), other subjects are instructed to
perform kinesthetically imagined movements ([42]) or quasi-movements ([43]).

As a test application of the performance of our BBCI system we implemented
a 1D cursor control. One of the two fields on the left and right edge of the screen
was highlighted as target at the beginning of a trial, see Fig. 5. The cursor was
initially at the center of the screen and started moving according to the BBCI
classifier output about half a second after the indication of the target. The trial
ended when the cursor touched one of the two fields. That field was then colored
green or red, depending on whether or not it was the correct target. After a
short period the next target cue was presented (see [8,44] for more details).

The aim of our first feedback study was to explore the limits of possible
information transfer rates (ITRs) in BCI systems not relying on user training
or evoked potentials. The ITR derived in Shannon’s information theory can be
used to quantify the information content, which is conveyed through a noisy
(i.e., error introducing) channel. In BCI context:

bitrate(p, N) = (p log,(p) + (1 — p) log, <]1V__pl> + 1og2(N)> (1)
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Fig. 5. Course of a feedback trial. The target cue (field with crosshatch) is indicated
for a ms, where a is chosen individual according to the capabilities of the user. Then the
cursor starts moving according to the BCI classifier until it touches one of the two fields
at the edge of the screen. The duration depends on the performance and is therefore
different in each trial (x ms). The touched field is colored green or red according to
whether its was the correct target or not (for this black and white reproduction, the
field is hatched with diagonal lines). After bms, the next trial starts, where b is chosen
indivudally for the subject.

where p is the accuracy of the subject in making decisions between N targets,
e.g., in the feedback explained above, N = 2 and p is the accuracy of hitting the
correct bars. To include the speed of decision into the performance measure:

ITR [bits/min] = # of decisions

duration in minutes bitrate(p, V) )
In this form, the ITR takes different average trial durations (i.e., the speed of
decisions) and different number of classes into account. Therefore, it is often used
as a performance measure of BCI systems ([45]). Note, that it gives reasonable
results only if some assumptions on the distribution of error are met, see [46].

The subjects of the study ([8,14]) were 6 staff members, most of which had
performed feedback with earlier versions of the BBCI system before. (Later,
the study was extended by 4 further subjects, see [44]). First the parameters of
preprocessing were selected and a classifier was trained based on a calibration
measurement individually for each subject. Then feedback was switched on and
further parameters of the feedback were adjusted according to the subject’s
request.

For one subject, no significant discrimination between the mental imagery
conditions was found, see [44] for an analysis of that specific case. The other
five subjects performed 8 runs of 25 cursor control trials as explained above.
Table 1 shows the performance result in accuracy (percentage of trials in which
the subject hit the indicated target) and as ITR (see above). As a test of practical
usability, subject al operated a simple text entry system based on BBCI cursor
control. In a free spelling mode, he spelled 3 German sentences with a total of
135 characters in 30 minutes, which is a spelling speed of 4.5 letters per minutes.
Note that the subject corrected all errors using the deletion symbol. For details,
see [47]. Recently, using the novel mental text entry system Hex-o-Spell which
was developed in cooperation with the Human-Computer Interaction Group at



Table 1. Results of a feedback study with 6 healthy subjects (identification code in
the first column). From the three classes used in the calibration measurement the two
chosen for feedback are indicated in second column (L: left hand, R: right hand, F:
right foot). The accuracies obtained online in cursor control are given in column 3. The
average duration + standard deviation of the feedback trials is provided in column 4
(duration from cue presentation to target hit). Subjects are sorted according to feedback
accuracy. Columns 5 and 6 report the information transfer rates (ITR) measured in
bits per minute as obtained by Shannon’s formula, cf. (1). Here the complete duration
of each run was taken into account, i.e., also the inter-trial breaks from target hit to
the presentation of the next cue. The column owverall ITR (0oITR) reports the average
ITR of all runs (of 25 trials each), while column peak ITR (pITR) reports the peak
ITR of all runs.

subject classes accuracy duration oITR pITR

[7%] [s] [b/m]  [b/m]
al LF 98.0 + 4.3 2.0 =+ 0.9 24.4 35.4
ay LR 95.0 + 3.3 1.8 + 0.8 22.6 31.5
av LF 90.5 +10.2 3.5 + 2.9 9.0 24.5
aa LR 88.5 + 8.1 1.5 £+ 04 174 37.1
aw RF 80.5 + 5.8 2.6 + 1.5 5.9 11.0
mean 90.5 + 7.6 23 + 0.8 15.9 27.9

the University of Glasgow, the same subject achieved a spelling speed of more
than 7 letters per minute, cf. [2,48].

3.2 Good Performance without Subject Training

The goal of our second feedback study was to investigate for what proportion of
naive subjects our system could provide successful feedback in the very first ses-
sion ([49]). The design of this study was similar to the one described above. But
here the subjects were 14 individuals who never performed in a BCI experiment
before. Furthermore the parameters of the feedback have been fixed beforehand
for all subjects to conservative values.

For one subject no distinguishable classes were identified. The other 13 sub-
jects performed feedback: 1 near chance level, 3 with 70-80%, 6 with 80-90% and
3 with 90-100% hits. The results of all feedbacks runs are shown in Fig. 6.

This clearly shows that a machine learning based approach to BCI such as
the BBCI is able to let BCI novices perform well from the first session. Note that
in all BCI studies — independent of whether machine learning is used or not —
non-performing subjects are encountered (e.g. [50]). It is an open problem how
to alleviate this issue.

3.3 Automatic Response Verification

An elegant approach to cope with BCI misclassifications is a response checking
mechanism that is based on the subject’s brain signals themselves. This ap-
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Fig. 6. Left: Feedback accuracy of all runs (gray dots) and intra-subject averages (black
crosses). Right: Histogram of accuracies obtained in BBCI-controlled cursor movement
task in all feedback runs of the study.

proach was first explored in [51] in an offline analysis of BCI feedback data. A
simple amplitude threshold criterium for the detection of error-related poten-
tials was used to demonstrate the potential use of the approach. Several studies
have shown the possibility to detect error-related potentials in choice reaction
tasks ([16,52,53]) with more advanced pattern recognition algorithms. The re-
sults taken together give a clear indication that a response verification might be
a worthwhile add-on to BCIs in the following sense of a two-pass system. We
call the original classification of the BCI feedback first-pass. Then in the second-
pass, the interval after the response feedback is subjected to the error potential
detector. If that indicates that the user perceived the feedback as an error, the
decision is rejected* . Surprisingly, so far no online BCI application with error-
detection was reported. Nevertheless, further important evidence was provided
in [26,54] by showing the detecability of potentials elicited by interaction errors
in a simulated BCI. But due to the discrete feedback with fixed timing used in
that study, it remains open how the situation would be in a continuous cursor
control feedback where an upcoming error might be anticipated by the users by
predictions about the cursor movement (e.g., no classical phasic error-related
component might be elicited when the cursor starts moving slowly towards the
wrong field).

Fig. 7 shows the ERPs for correct and erroneous feedback trials with respect
to time point ¢ = 0 when the cursor enters either the correct or the wrong field
(for the design of the feedback, see Fig. 5). In this subject the error-related pos-

“In binary decisions the outcome could even be reverted. But practically it was
observed that such a strategy leads to less improvement if the error detection itself is
also error prone ([54]).
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Fig. 7. Left: ERPs for correct and erroneous feedback trials. Right: Topography of
signed r? values for the time intervals of error-related negativity (110 to 150 ms) and
error-related positivity (170 to 230 ms).

itivity as well as the error-related negativity is clearly visible at fronto-central
and parieto-central scalp position. In other subjects often only the positive com-
ponent was observed. It can be speculated that the shorter negative component
is obscured by the jitter on the time point of error recognition owing to the
feedback paradigm (see remark above). This issue is subject of an ongoing in-
vestigation.

In order to quantify the potential gain of an automatic error rejection, we
calculate the bitrate of a two-pass BCI system as outlined above. Let ¢p be the
rate of true positives (erroneous trials, classified as errors) and tn the rate of true
negatives (correct trials, classified as correct). Then we can calculated the bitrate
of a system that rejects trials which were classified as errors in the following way

([54]):

Taccepted = P tn + (1 —p)(1 —tp) rate of accepted trials
tn .
Paccepted = Pp———— accuracy on accepted trials
Taccepted
bitrate,y (p, tp, tn, N) = bitrate(paccepted; V) (3)

Fig. 8 shows the improvement in ITR that would have been achieved by using
the response verification with rejecting decision for trials which were classified
as erroneous. The relative gain obtained through response verification is 80 %
on average for the worse performing subjects and 25 % for better performing
subjects.

4 Applications of BBCI Technology

Subsequently we will discuss BBCI applications for rehabilitation (prosthetic
control and spelling [2,3,48]) and beyond (gaming, mental state monitoring [55,
56] etc.). Our view is that the development of BCI to enhance man machine
interaction for the healthy will be an important step to broaden and strengthen
the future development of neurotechnology.
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Right: Relative gain obtained through response verification. The mean for the worse
performing subjects is 80 % and the mean for better performing subjects is 25 %.

4.1 Prosthetic Control

Motor-intention based BCI offers the possibility of a direct and intuitive control
modality for persons disabled by high-cervical spinal cord injury, i.e., tetraplegics,
whose control of all limbs is severely impaired. The advantage of this type of BCI
over other interface modalities is that by directly translating movement inten-
tion into a command to a prosthesis, the link between cortical activity related
to motor control of the arm and physical action is restored, thereby offering a
possible rehabilitation function, as well as enhanced motivation factor for daily
use. Testing of this concept is the main idea driving the Brain2Robot project
(see Acknowledgement). However, two important challenges must be fully met
before non-invasive, EEG based motor imagery BCI can be practically used by
the disabled.

One such challenge is the cumbersome nature of standard EEG set-up, in-
volving application of gel, limited recording time, and subsequent removal of the
set-up, which involves washing the hair. It is unlikely that disabled persons, in
need of BCI technology for greater autonomy, would adopt such a system. Mean-
while, short of any invasive or minimally invasive recording modality, the only
available option is the use of so called ‘dry’ electrodes, i.e. not requiring the use
of conductive gel or other liquids in such a way that electrode application and
removal takes place in a matter of minutes. We have developed such technology
(a ‘dry cap’) and tested it for motor-imagery based BCI [57]. The cap required
about 5 minutes for set-up and exhibited an average of 70 % of the information
transfer rate achieved for the same subjects with respect to a standard EEG ‘gel
cap’, the difference being most likely attributed to the use of 6 electrodes used
in the dry cap vs. 64 electrodes used in the gel cap. Although the locations of
the 6 electrodes were chosen judiciously (by analyzing which electrode positions
in the gel cap were most important, as expected 3 electrodes over each cortical



motor area), some performance degradation was unavoidable and necessary — a
full 64 electrode dry cap would also be cumbersome.

Another challenge for EEG-BCI control of prosthetics is inherent safety. This
is of paramount importance, whether the prosthetic controlled is an orthosis (a
worn mechanical device which augments the function of a set of joints) or a robot
(which may move the paralysed arm or be near the body but unattached to it,
as in the case of Brain2Robot), or even a neuroprosthesis, i.e. a system which
electrically activates muscles in the user’s arm or peripheral neurons which in-
nervate these muscles. Specifically, the BCI interface should not output spurious
or unintended action commands to the prosthetic device, as these could cause
injuries, or even in the case in which the probability of injury is low and sec-
ondary safety ‘escape commands’ are incorporated, it may (reasonably) cause
fear in the otherwise immobile user and therefore discourage him or her from
continuing to use the system. Therefore we have looked at necessary enhance-
ments to commonly used ‘BCI feedback’ control which could incorporate the
use of a ‘rest’ or ‘idle’ state, i.e. a continuous output of the classifier which not
only outputs a command related to a trained brain state (say, imagination of
left hand movement) but a ‘do nothing’ command related to a state in which the
user performs daily activities unrelated to motor imagination (a ‘rest’ or ‘idle’
state) and in which the prosthetic should do nothing. Thus we have begun to
look at the trade-off between speed of BCI (information transmission rate or
ITR) and safety (false positive rate) achievable by incorporating a ‘control’ law,
which is a differential equation whose inputs are continuous outputs of the clas-
sifer, in our case a quadratic-type classifier, and whose output is the command
to the prosthetic ([58]). It remains to be seen how much each particular subject,
whose ‘standard’ BCI performance varies greatly, must trade reduced speed for
increased safety.

A final implicit goal of all BCI research is to improve the maximally achiev-
able ITR for each type of brain imaging modality. In the case of EEG the ITR
is seems to be limited to about 1 decision every 2 seconds ([44], fastest subject
performed at an average speed of 1 binary decision every 1.7s) despite intensive
research effort to improve it. In the case of Brain2Robot further information
about the desired endpoint of arm movement is obtained by 3D tracking of gaze
— eye movement and focus being normally intact in the tetraplegic population,
and the achievable ITR is sufficient, since it lies in the range of the frequency
of discrete reaching movements of the hand. However, competing issues of cog-
nitive load, safety and achievable dexterity can only be assessed by testing BCI
for prosthetic control with the intended user group while paying attention to the
level of disability and motor-related EEG patterns in each subject, as both are
likely to vary significantly.

4.2 Time-critical Applications: Prediction of Upcoming Movements

In time-critical control situations, BCI technology might provide early detection
of reactive movements based on preparatory signals for the reduction of the
time span between the generation of an intention (or reactive movements) and
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Fig. 9. Left: Averaged readiness potential in spontaneous selfpaced (grey) and reactive
(dark) finger movements (with ¢ = 0 at key press) for one subject. Right: Distribution
of the continuous classifier output in both experimental settings.

the onset of the intended technical operation (e.g. in driver-assisted measures for
vehicle safety). Through detection of particularly early readiness potentials (see
Section 1.2) which reflect the mental preparation of movements, control actions
can be prepared or initiated before the actual movement and thus we intend to
decode these signals in a very timely and accurate manner.

In order to explore the prospective value of BCI for such applications, we
conducted a two alternative forced choice experiment (d2-test), in which the
subject had to respond as fast as possible with a left or right index finger key
press, see [59]. Fig. 9 (left) compares the readiness potentials in such reactive
finger movements with those in selfpaced finger movements (¢ = 0 for key press).
Fig. 9 (right) shows the traces of continuous classifier output for reactive (upper
subplot) and selfpaced (lower subplot) finger movements. As expected, the dis-
crimination between upcoming left vs. right finger movements is better possible
for the self-paced movements at an early stage, but towards the time point of key
press performance is similar. In particular, 100 ms before the keypress even for
movements in fast reations, a separation becomes substantial. The discriminabil-
ity already at this point in time confirms the potential value of BCI technology
for time-critical applications. For more details and classification results, we refer
the interested reader to [59].

4.3 Neuro Usability

In the development of many new products or in the improvement of existing
products, usability studies play an important role. They are performed in order
to measure to what degree a product meets the intended purpose with regard
to the aspects effectiveness, efficiency and user satisfaction.A further goal is to
quantify the joy of use. While effectiveness can be quantified quite objectively,
e.g., in terms of task completion, the other aspects are more intricate to assess.
Even psychic variables consciously unaccessible to the persons themselves might
be involved. Furthermore, in usability studies it is of interest to perform an



effortless continuous acquistion of usability parameters whilst not requiring any
action on the side of the subject as this might interfer with the task at hand. For
these reasons, BCI technology could become a crucial tool for usability studies
in the future.

We exemplify the potential benefit of BCI technology in one example ([55]).
Here, usability of new car features is quantified by the mental workload of the car
driver. In the case of a device that uses fancy man-machine interface technology,
the producer should demonstrate that it does not distract the driver from the
traffic (mental workload is not increased when the feature is used). In case of a
tool for which the manufacturer claims it relieves the driver from workload (e.g.,
automatic distance control), this effect should be demonstrated as objectively as
possible.

Since there is no ground truth available on the cognitive workload to which
the driver is exposed, we designed a study® in which additional workload was in-
duced in a controlled manner. For details, please refer to [55]. EEG was acquired
from 12 male and 5 female subjects while driving on a highway at a speed of
100 km/h (primary task). Second, the subjects had an auditory reaction task:
one of two buttons mounted on the left and right index finger had to be hit
every 7.5 s according to a given vocal prompt. For the tertiary task, two dif-
ferent conditions have been used. (a) mental calculation; (b) following one of
two simultaneously broadcast voice recordings. In a first a calibration phase, the
developed BBCI workload detector was adapted to the individual driver. After
that, the system was able to predict the cognitive workload of the driver online.
This information was used in the test phase to switch off the auditory reaction
task, when high workload was detected (‘mitigation’).

As a result of the mitigation strategy, the average reaction time in the test
phase was on average 100 ms faster than in the (un-mitigated) calibration phase
([55])- Since in total the workload during the two phases has been equal, it can
be conjectured that the average reactivity was the same. Thus, the difference
in reaction times can only be explained by the fact that the workload detector
switched off the reaction task during periods of reduced reactivity.

Note, that the high intersubject variabiltiy, which is a challenge for many
BCT applications comes as an advantage here: for neuro-usability studies, top
subjects (with respect to the detectability of relevant EEG components) of a
study can be selected according to the appropriateness of their brain signals.

Beyond the neuro usability aspect of the study, one could speculate that
such devices might be incorporated in future cars in order to reduce distractions
(e.g., navigation system is switched off during periods of high workload) to a
minimum when the drivers’ brain is already over-loaded by other demands during
potentially hazardous situations.

This study was performed in cooperation with the Daimler AG. For further infor-
mation, please refer to [55].



4.4 Mental State Monitoring

When aiming to optimize the design of user interfaces or, more general, of a work
flow, the mental state of a user during the task execution can provide useful
information. This information can not only be exploited for the improvement of
BCT applications, but also for improving industrial production environments, the
user interface of cars and for many other applications. Examples of these mental
states are the levels of arousal, fatigue, emotion, workload or other variables
whose brain activity correlates (at least partially) are amenable to measurement.
The improvement of suboptimal user interfaces reduces the number of critical
mental states of the operators. Thus it can lead to an increase in production
yield, less errors and accidents, and avoids frustration of the users.

Typically, information collected about the mental states of interest is ex-
ploited in an offline analysis of the data and leads to a re-design of the task or
the interface. In addition, it might be desirable that a method for mental state
monitoring can be applied online during the execution of a task. Traditional
methods for capturing mental states and user ratings are questionnaires, video
surveillance of the task, or the analysis of errors made by the operator. However
questionnaires are of limited use for precisely assessing the information of inter-
est as the delivered answers are often distorted by subjectiveness. Questionnaires
cannot determine the quantities of interest in real-time (during the execution of
the task) but only in retrospect; moreover, they are intrusive i.e. they interfere
with the task. Even the monitoring of eye blinks or eye movements only allows
for an indirect access to the user’s mental state. Although the monitoring of a
user’s errors is a more direct measure, it detects critical changes of the user state
post-hoc only. Neither is the anticipation of an error possible, nor can suitable
countermeasures be taken to avoid it.

As a new approach we propose the use of EEG signals for mental state mon-
itoring and combine it with BBCI classfication methods for data analysis. With
this approach the brain signals of interest can be isolated from background activ-
ity as in BCI systems; this combination allows for the non-intrusive evaluation of
mental states in real-time and on a single-trial basis such that an online system
with feedback can be build.

In a pilot study ([56]) we evaluated the use of EEG signals for arousal moni-
toring. The experimental setting simulates a security surveillance system where
the sustained concentration ability of the user in a rather boring task is crucial.
As in BCI, the system had to be calibrated to the individual user in order to
recognize and predict mental states, correlated with attention, task involvement
or a high or low number of errors of the subject respectively.

Experimental Setup for Attention Monitoring In this study a subject
was seated approx. 1m in front of a computer screen that displayed different
stimuli in a forced choice setting. She was asked to respond quickly to stimuli by
pressing keys of a keyboard with either the left or right index finger; recording
was done with a 128 channel EEG at 100 Hz. The subject had to rate several
hundred x-ray images of luggage objects as either dangerous or harmless by a



key press after each presentation. The experiment was designed as an oddball
paradigm where the number of the harmless objects was much larger than that
of the dangerous objects. The terms standard and deviant will subsequently be
used for the two conditions. One trial was usually performed within 0.5 seconds
after the cue presentation.

The subject was asked to perform 10 blocks of 200 trials each. Due to the
monotonous nature of the task and the long duration of the experiment, the
subject was expected to show a fading level of arousal which results in worse
concentration and the generation of more and more erroneous decisions during
later blocks.

For the offline analysis of the collected EEG signals, the following steps were
applied. After exclusion of channels with bad impedances a spatial Laplace filter
was applied and the band power features from 813 Hz were computed on 2s
windows. The resulting band power values of all channels were concatenated
into a final vector. As the subject’s correct and erroneous decisions were known,
a supervised LDA classifier was trained on the data. The classification error
of this procedure was estimated by a cross-validation scheme that left out a
whole block of 200 trials during each fold for testing. As the number of folds was
determined by the number of experimental blocks it varied slightly from subject
to subject.

Results The erroneous decisions taken by a subject were recorded and smoothed
in order to form a measure for the arousal. This measure is further referred to
as error index and reflects the ability of the subject to concentrate and fulfill
the security task. To enhance the contrast of the discrimination analysis, two
thresholds were introduced for the error index and set after visual inspection.
Extreme trials outside these thresholds defined two sets of trials with a rather
high rsp. a low value. The EEG data of the trials were labeled as sufficiently
concentrated or insufficiently concentrated depending on these thresholds for
later analysis. Fig. 10 shows the error index. The subject did perform nearly
error-free during the first blocks but then showed increasing errors beginning
with block 4. However, as the blocks were separated by short breaks, the subject
could regain attention at the beginning of each new block at least for a small
number of trials. The trials of high and low error index formed the training data
for teaching a classifier to discriminate mental states of insufficient arousal based
on single trial EEG data.

A so-called Concentration Insufficiency Index (CII) of a block was generated
by an LDA classifier that had been trained off-line on the labeled training data
of the remaining blocks. The classifier output (CII) of each trial is plotted in
Fig. 10 together with the corresponding error index. It can be observed that
the calculated CII mirrors the error index for most blocks. More precisely the
CII mimics the error increase inside each block and in blocks 3 and 4 it can
anticipate the increase of later blocks, i.e. out-of-sample. For those later blocks
the CII reveals that the subject could not recover its full arousal during the
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Fig. 10. Left: Comparison of the concentration insufficiency index (CII, dotted curve)
and the error index for the subject. The error index (the true performed errors smoothed
over time) reflects the inverse of the arousal of the subject. Right: Correlation coefficient
between the CII (returned by the classifier) and the true performance for different time
shifts. Highest correlation is around a zero time shift as expected. Please note that the
CII has an increased correlation with the error even before the error appears.

breaks. Instead it shows a short-time arousal for the time immediately after a
break, but the CII accumulates over time.

The correlation coefficient of both time series with varying temporal delay
is shown in the right plot of Fig. 10. The CII inferred by the classifier and the
errors that the subject had actually produced correlate strongly. Furthermore
the correlation is high even for predictions that are up to 50 trials ahead into
the future.

For a physiological analysis please refer to the original paper [56].

5 Conclusion

The chapter provides a brief overview on the Berlin Brain-Computer Interface.
We would like to emphasize that the use of modern machine learning tools —
as put forward by the BBCI group — is pivotal for a successful and high ITR
operation of a BCI from the first session [44,49]. Note that due to space limi-
tations the chapter can only discuss general principles of signal processing and
machine learning for BCI; for details ample references are provided (see also [3]).
Our main emphasis was to discuss the wealth of applications of neurotechnology
beyond rehabilitation. While BCI is an established tool for opening a communi-
cation channel for the severely disabled ([60-64], its potential as an instrument
for enhancing man-machine interaction is underestimated. The use of BCI tech-
nology as a direct channel additional to existing means to communicate opens
applications in mental state monitoring [55,56], gaming [65,66], virtual environ-
ment navigation[67], vehicle safety [55], rapid image viewing [68] and enhanced
user modeling. To date only proofs of concept and first steps have been given
that still need to move a long way to innovative products, but already the atten-
tion monitoring and neuro usability applications outlined in Section 4.3 and 4.4
show the usefulness of neurotechnology for the monitoring of complex cognitive
mental states. With our novel technique at hand, we can make direct use of
mental state monitoring information to enable Human-Machine Interaction to
exhibit adaptive anticipatory behaviour.



To ultimately succeed in these promising applications the BCI field needs
to proceed in multiple aspects: (a) improvement of EEG technology beyond gel
electrodes and (e.g. [57]) towards cheap and portable devices, (b) understanding
of the BCl-illiterates phenomenon, (c) improved and more robust signal process-
ing and machine learning methods, (d) higher ITRs for non-invasive devices and
finally (e) the development of compelling industrial applications also outside the
realm of rehabilitation.
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