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Abstract. It is a well-known finding in human psychophysics that a
subject’s recognition of having committed a response error is accompag-
nied by specific EEG variations that can easily be observed in averaged
event-related potentials (ERP). Here, we present a pattern recognition
approach that allows for a robust single trial detection of this error po-
tential from multichannel EEG signals. By designing classifiers that are
capable of bounding false positives (FP), which would classify correct re-
sponses as errors, we achieve performance characteristics that make this
method appealing for response-verification or even response-correction in
EEG-based communication, i.e., brain-computer interfacing (BCI). This
method provides a substantial improvement over the choice of a simple
amplitude threshold criterion, as it had been utilized earlier for single
trial detection of error potentials.

1 Introduction

A brain-computer interface (BCI) is a system capable of translating a subject’s
intention as represented by brain signals into a technical control signal. In EEG-
based communication such brain signals are measured non-invasively by means of
a multichannel electroencephalogram (EEG). Although research in this area has
made great progress in the last years ([1], [2], [3]) there is still a significant lack of
accuracy and information transfer speed. Furthermore, all research groups report
a considerable intersubject variability: while some subjects learn to operate quite
well with the respective BCI system, others have to face error rates that make
its usage uncomfortable.

An elegant approach to overcome the problem of low classification accuracy
would be a response checking mechanism that is based on the subject’s brain
signals themselves. It is well-known from the neuroscience literature [4] that a
subject’s recognition of having committed a response error evokes specific EEG
variations, see Section 1.1. The present paper focuses on the ability to pick
up this error potential in single trials to provide a tool for response checking
in EEG-based communication. Clearly from such a tool those persons would
benefit most, who otherwise can only reach a modest BCI control because of a
substantial fraction of classification errors.



1.1 Neurophysiological background

The ERP after an error trial is characterized by two components: a negative
wave called error negativity (NE) and a following broader positive peak labeled
as error positivity (PE), [4]. Recent studies revealed that the PE is more specific
to errors while the NE can also be observed in correct trials, cf. [4]. Although
both amplitude and latency depend on the specific task, the NE occurs delayed
and less intense in correct trials than in error trials. The NE has a fronto-central
maximum, the PE a centro-parietal maximum. At present, there is not yet a final
consensus about the underlying cognitive functions. NE seems to reflect some
kind of comparison process. Due to the localization of the origin in the anterior
cingulate cortex [4] it might be an emotional and/or attentional component. In
contrast, PE seems to be connected to conscious error detection [5].

The one study reporting error potentials in a BCI context [6] is solely based
on PE, but the neurophysiological findings indicate that also the NE component
might be useful to some degree.

2 Aims and Methods

2.1 Response verification for BCIs

Most BCI systems allow the user to select one out of several choices. At present
there are often only two classes ([1], [3], [7]), but there are also multi-class BCIs,
e.g. [2], [8]. For such BCI systems an error detection algorithm can provide a
useful add-on. If there are just two classes, detecting an error allows to correct
the BCI classification (response-correction), for more than two classes at least
wrong classifications can be rejected (response-verification).

While the idea of correcting BCI misclassifications is tempting, one has to
be careful: as the detection method will not work perfectly, some correct BCI
classifications can potentially get ›corrected‹ towards a wrong choice. If the pro-
portion of such miscorrections is non-negligible the subject will become irritated.
Even if the mechanisms works well enough to theoretically increase the informa-
tion transfer rate it may be unfavorable in a psychological sense. This implies the
need to strictly bound the rate of false positives (FP-rate: the fraction of acual
correct trials which is misclassified as an error), where we use the nomenclature
that ›positive‹ events are the ones that are to be detected, i.e., trials where the
BCI algorithm missed to detect the subject’s intention.

2.2 Experiments

At this stage we investigated EEG data from an attention test, while BCI feed-
back experiments are planned for the next step. Eight healthy subjects took part
in one EEG measurement each, in which they had to perform a variant of the
›d2-test‹, [9]. After a computer screen displayed visual stimuli, subjects had to
respond to targets by pressing a key with the right index finger and to non-
targets with the left index finger. Targets in the d2-test are compound symbols



consisting of the letter ›d‹ and exactly two horizontal bars that may occur in
four possible positions each. Non-targets either show the letter ›b‹ and an arbi-
trary number of bars (0–4) or the letter ›d‹ and a number of bars that differs
from two, see Fig. 1 for some examples. After the subject’s keystroke the reaction
time was displayed on the screen, either in green if the response was correct, or
in red if it was erroneous. The next trial began 1.5±0.25 s later. A summary of
the experiments with reaction times and error rates is given in Table 2.
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Fig. 1. Examples of targets and non-targets
in the d2-test on the left. The electrode mon-
tage is shown on the right.

Table 2. Summary of the experiments
with ›d2-paradigm‹.

subject reac. trials err. err.
[code] [ms] [#] [#] [%]

aa 539 977 101 10.3
ab 434 893 41 4.6
ac 556 896 8 0.9
ad 477 893 46 5.2
ah 551 884 19 2.1
ae 504 894 39 4.4
af 497 893 35 3.9
ag 529 892 42 4.7

Brain activity was recorded with 28 Ag/AgCl electrodes, cf. Fig. 1, referenced
to nasion, with a broad band-pass filter. Besides EEG we recorded a horizontal
and vertical electrooculogram (EOG). In an event channel timing and types of
stimuli and keystrokes were stored along with the EEG signal.

No (!) trials were rejected due to artifacts, but all trials in which the subject
hit two keys (simultaneously or sequentially) were sorted out.

2.3 A Pattern matching method

The two components that are observed in the EEG related to errors are slow
cortical potentials (SCPs). In [7] we presented a successful method for classifying
single trial EEG based on SCPs which can be used here with some appropri-
ate modifications. In [7] the key for good results was the combination of high-
dimensional features and robust learning machines for classification. The features
we use in this study are subsampled versions of the relevant channels (marked
labels in Fig. 1). Subsampling from 100Hz to 20Hz was done by calculating the
mean of consecutive 5-tupel of data points.

The advantage of this preprocessing for ERP analysis is that the resulting
classification problem has a simple structure, though being high-dimensional.
The distributions of the feature vectors of each class can be modelled by a normal
distribution, the mean of which is the feature of the ERP of the corresponding
condition, cf. [10]. The covariance matrix is determined by non-task related brain
activity. As this is approximately the same for both classes, the classification has



to separate two normal distributions with equal covariance matrices. The Bayes-
optimal classifier for this task is the Fisher Discriminant (FD). Dealing with
high noise cases in a high-dimensional space typically requires regularization in
order to obtain stable estimates of the covariance matrices.

But in the present situation we are looking for the classifier which is optimal
under the constraint that the FP-rate attains a predefined value (on the training
set). For linear classifiers in a separating hyperplane formulation (w>x+ b = 0)
this can be accomplished by adjusting the threshold b. This procedure is indeed
optimal in conjunction with the FD under the forementioned assumptions, which
can be seen using the Neyman-Pearson Lemma (we thank Marina Meila for this
remark), or by the following direct proof.

Let (X,Y ) ∈ � n × {N,P} be random variables such that the conditionals
P (X | Y = N) and P (X | Y = P ) are N (µN , Σ) resp. N (µP , Σ) distributed
(i.e., normal distribution with mean µ∼ and covariance matrix Σ). The problem
is to maximize P (w>X+b > 0 | Y = P ) subject to P (w>X+b > 0 | Y = N) = δ
for some fixed δ ∈ (0, 1). Denoting the distribution function of N (µ, σ) by
FN (µ,σ) we have δ = P (w>X + b > 0 | Y = N) = 1 − FN (w>µN+b, w>Σw)(0) =

1 − FN (0,1)(−(w>µN+b)/
√
w>Σw). Hence for β := F−1

N (0,1)(1 − δ) we obtain the

threshold b = −β
√
w>Σw − w>µN in dependence from the optimal w. Sub-

stituting this term for b one can see that P (w>X + b > 0 | Y = P ) = · · · =∫∞
0

1/
√

2π exp(−1/2[t+β−w>(µP −µN )(w>Σw)−1/2]2)dt, and this expression is
maximized if w>(µP −µN )(w>Σw)−1/2 is maximized. Since the last term is the
square root of the Rayleigh coefficient we get the same w as from FD (qed).

2.4 Amplitude threshold criterion.

For comparision we also implemented the absolute amplitude criterion, the only
algorithm for the detection of the error potential in a BCI context published
so far, [6]. In this method all trials for which the amplitude of the Cz channel
averaged over a predefined time period exceeds a predefined threshold are classi-
fied as errors. To make the comparison fair we extracted amplitude peaks for all
channels that were used in our method, and the optimal hyperplane threshold
was determined by the same learning algorithm.

3 Results

In the average difference potential ›miss-minus-hit‹ the two discussed compo-
nents NE and PE emerge very pronounced, cf. the ERP for subject ad in Fig. 3.
The other ERPs show the same characteristics. For all subjects an early nega-
tive and a later positive component is clearly observable. The main intersubject
differences concern the latency of the two components and the fall-off after the
PE. For three subjects (ab, ac, ad) the peak of the NE shows up very early about
10–30ms, but even in all other subjects it is not later than 60ms. That peak
is too early to be a reaction to the visual feedback at 0ms. This observation is
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Fig. 3. Average miss-minus-hit EEG-traces at electrodes along the vertex for subject
ad. Regions of NE and PE are shaded and scalp topographies for that regions are shown
in the two subplots at the right.

in agreement with the subjects’ reports that in erroneous trials they often knew
they were going to make a mistake while they initiated the movement but they
could not withhold anymore.

As was pointed out in Section 2.1 a special demand on the error detection
is the ability to strictly bound false positive classifications. The first question
that arises here is: how well does the bound for FPs that we enforce on the
training set carry over to the test set. Training a classifier for FP=2% resulted
for all 8 data sets in FP-rates between 2.3% and 3.5%. In order to make the
comparison between different data sets and parameter choices easier, we used a
cross-validation in which (the thresholds of the linear) classifiers were adapted
after training to obtain a predefined FP-rate so that the detection performance
is reflected by the FN-value only. In Fig. 4 our pattern matching method was
evaluated for FP-bounds at 1%, 2% and 3%. Subjects were sorted according
to the FN-rate at FP=2%: the performance is ›very good‹ (FN611%) for 4
subjects, ›good‹ (FN622%) for 3 subjects and ›not good‹ only for subject aa.
White bars show the corresponding error rates for the amplitude criteron.

To assess the potential value of the proposed error detection method for
improving BCI transmission rates, we take a look at an example. A BCI accuracy
of p =0.85 in a two class decision (N = 2) has a theoretical information of
log2N + p log2 p + (1 − p) log2(1−p/N−1) = 0.39 bits per selection. Moderately
assuming that the error-correctionmethod works with 20% FN at 3% FP this can
be increased by more than 75% to 0.69 bits, where the accuracy of the improved
system is calculated by p · (1 − FP) + (1 − p) · (1 − FN) = 0.94. Obviously the
gain gets less the higher the original BCI accuracy is. This trade-off is depicted
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Fig. 4. Rate of FNs for detection at
300ms with fixed FP-rate. White bars
show the corresponding FN-rates for the
amplitude criteron, cf. Section 2.4.
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in Fig. 5, note that with the assumed parameters an error correction approach
is useful as long as the pure BCI accuracy is lower than 96%.
Ocular artifacts. In [6] it was reported that the end of many trials contained
eyeblinks, an effect that is also present in our data. So is has to be made sure
that classification success is not based on ocular contamination of the EEG.
Therefore we also tried a classification of errors based on the EOG signals in the
same way as we did EEG-based classification. The resulting FN-rate was >95%
for most subjects, and only for subject ae it was 77% which is still more than 8
times higher than in EEG-based detection with 9%.

4 Discussion

Our pattern recognition approach to single trial detection of the error poten-
tial provided a substantial improvement in comparison to a simple amplitude
threshold criterion, and the expected gain for BCI classification is promising.
The important next step is to conduct BCI experiments with real-time feedback
to check whether the error potentials are of the same type in such a scenario.
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