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The BCI Competition III:
Validating Alternative Approaches to Actual BCI Problems
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Alois Schlögl, Gert Pfurtscheller, José del R. Millán, Michael Schröder, Niels Birbaumer

Abstract— A Brain-Computer Interface (BCI) is a system that
allows its users to control external devices with brain activity.
Although the proof-of-concept was given decades ago, the reliable
translation of user intent into device control commands is still
a major challenge. Success requires the effective interaction of
two adaptive controllers: the user’s brain, which produces brain
activity that encodes intent, and the BCI system, which translates
that activity into device control commands. In order to facilitate
this interaction, many laboratories are exploring a variety of
signal analysis techniques to improve the adaptation of the BCI
system to the user. In the literature, many machine learning
and pattern classification algorithms have been reported to give
impressive results when applied to BCI data in offline analyses.
However, it is more difficult to evaluate their relative value for
actual online use. BCI data competitions have been organized
to provide objective formal evaluations of alternative methods.
Prompted by the great interest in the first two BCI Competitions,
we organized the third BCI Competition to address several of the
most difficult and important analysis problems in BCI research.
This article describes the data sets that were provided to the
competitors and gives an overview of the results. In a series of
accompanying articles, the winning teams describe their methods
in detail.

Index Terms— augmentative communication, beta-rhythm,
BCI, brain-computer interface, EEG, ERP, imagined hand move-
ments, mu-rhythm, non-stationarity, P300, rehabilitation, single-
trial classification, slow cortical potentials.

I. I NTRODUCTION

BRAIN-COMPUTER INTERFACES (BCIs) allow to di-
rectly control a computer application or a technical device
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by intent alone. The system estimates the intent of the human
user from her/his brain signals measured at microscopic,
mesoscopic, or macroscopic scale, cf. [1], [2], [3], [4] for an
overview. The interest in BCI research is strongly increasing
as reflected by the exponentially growing number of published
peer-reviewed journal papers on that topic.

BCI Competitions are organized in order to foster the
development of improved BCI technology by providing an
unbiased validation of a variety of data analysis techniques.
In each competition a variety of data sets was made publicly
available in a documented format via internet ([5], [6], [7]).
Each data set is a record of brain signals from BCI experiments
of leading laboratories in BCI technology split into two parts:
one part of labeled data (‘training set’) and another part of
unlabeled data (‘test set’). Researchers worldwide could tune
their methods to the training data and submit the output of
their translation algorithms for the test data. The truth about
the test data was kept secret until, after the deadline, it was
used to evaluate the submissions. This procedure guarantees
that the assessment of performance is not biased by overfitting
the selection of methods and the choice of their parameters to
the data.

The three BCI Competitions were arranged in 2001, 2002
and 2004. The growing interest in such contests is reflected
by the number of submissions rising from 10 to 57 to 92. The
tasks and results of the first two competitions are summarized
in [8], [9]. The first competition was a test for us to see how
such an enterprise would work, and how much attention it
would attract. In the second competition we provided a broad
range of typical fundamental BCI problems. For the third BCI
Competition ([7]) presented here we advanced to a diversity of
catchy analysis challenges that are highly relevant to present
BCI research.

More specifically, the competition comprised the problems
of session-to-session transfer, non-stationarity, small training
sets, subject-to-subject transfer, continuous test data without
trial structure, asynchronous paradigms and idle states.

A. Ranking of competition results

The ranking of results from Internet competitions cannot be
taken at face value since they may not provide a completely
objective assessment of quality for several reasons:

(1) There is great variance in how much effort contributors
put into preparing their submissions.

(2) When test sets (and the number of classes) are relatively
small, luck may also play a big role. For example, if there
are 15 methods in a binary problem that are able to classify
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TABLE I

IN THIS TABLE THE WINNING TEAMS FOR ALL COMPETITION DATA SETS

ARE LISTED. REFER TOSEC. V TO SEE WHY THERE IS NO WINNER FOR

DATA SET IV B.

data set research lab contributor(s)

I Tsinghua University, Bei-
jing, China

Qingguo Wei, Fei Meng, Yijun
Wang, Shangkai Gao

II PSI CNRS FRE-2645,
INSA de Rouen, France

Alain Rakotomamonjy, V. Guigue

IIIa Neural Signal Processing
Lab Institute for Infocomm
Research, Singapore

Cuntai Guan, Haihong Zhang,
Yuanqin Li

IIIb Fraunhofer (FIRST) IDA,
Berlin, Germany

Steven Lemm

IVa Tsinghua University, Bei-
jing, China

Yijun Wang , Han Yuan, Dan Zhang,
Xiaorong Gao, Zhiguang Zhang,
Shangkai Gao

IVc Tsinghua University, Bei-
jing, China

Dan Zhang, Yijun Wang

V University of Barcelona Ferran Galán, Francesc Oliva, Joan
Guàrdia

correctly 60 % of the ideal set of all trials with random output
on the remaining 40 %, the expected accuracy of all these
methods is 80 %. However, on a fixed test set consisting of 100
trials, the expected difference between the best and the worst
result is greater than 10 % (assuming independence between
methods and test trials).

In Sec. II–VI of this paper, we will describe the eight
data sets comprising the competition and we will report and
comment on the submissions. The results of all submissions
are completely reported on the web ([10]) where we also list
short descriptions of all applied methods. A list of the winning
teams for each data set is summarized in table I. The winning
labs published individual articles on their approaches, see [11],
[12], [13], [14], [15], [16], [17] in this issue.

II. DATA SET I

This data set was provided by the Institute of Medi-
cal Psychology and Behavioral Neurobiology, University of
Tübingen (head: Niels Birbaumer) and Max-Planck-Institute
for Biological Cybernetics, Tübingen, (Bernhard Schökopf),
and Universität Bonn, Dept. of Epileptology.

A. Description of the data set

This data set addresses the robustness of a classification
approach. A common task in BCI is to apply a classifier that
was trained during previous sessions during a later session
without retraining it. The challenge of this task is that the
electrical patterns of the patient might show some different
characteristics on a new session. This kind of non-stationarity
can be caused for example by changed levels of motivation,
arousal, fatigue etc. In addition, the recording system might
have undergone slight changes concerning electrode positions
and impedances.

Data set I reflects this situation: training and test data were
recorded from the same subject and the same experimental
task, but on two different days with about one week of delay.

As electrocorticography (ECoG) was used and not EEG, the
variation of electrode positions and impedances are expected
to be rather small. The competitors were asked to set up
a classifier based on the labeled training data of the first
session and apply it to the unlabeled test data of the second
session. The performance criteria used for evaluation was the
percentage of correctly classified test trials.

The subject was not a locked-In patient but suffered from
epilepsy. For this reason his neural activity was monitored for
several days with an ECoG recording. During this interval the
subject twice participated in a BCI experiment based on motor
imagery. The task of both sessions was the same: to produce
imagined movements of either the left small finger or the
tongue. The provided data sets consist of 278 trials performed
during the first session (training data) and 100 trials from the
second session (test data). Electrical brain activity was picked
up with an8 × 8 ECoG platinum electrode grid which was
placed on the contralateral (right) motor cortex. The grid was
covered by meninges and scull and was not sensitive to muscle
artifacts. As the scull and the meninges act as low-pass filters
during EEG recordings, ECoG data can contain stronger high-
frequency components than EEG. The grid was assumed to
cover the right motor cortex completely, but due to its size
(approx.8 × 8 cm) it could in addition record activity from
surrounding cortical areas. All recordings were performed with
a sampling rate of 1000 Hz. After amplification the recorded
potentials were stored as microvolt values.

Trial duration was three seconds. To avoid visually evoked
potentials being reflected by the data, the recording intervals
started 0.5 seconds after the visual cue had ended. For further
information about the experiment, please refer to [18].

B. Outcome of the competition

We received 27 submissions for the test labels. Many
submitted results were of high quality, 12 out of 27 submis-
sions managed to achieve more than 80 percent classification
accuracy on the test set. Although including an outlier of only
22 percent accuracy (probably submitted with accidentally
confused class labels) the average accuracy of all submissions
was 70 percent. Fig. 1 shows the histogram of the submission
accuracy.
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Fig. 1. Histogram of the classification accuracy of 27 submitted solutions.
One submission stays clearly below the chance level of 50 percent. A group
of 14 submissions reaches more than 78 percent accuracy.
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The submissions of rank one to three and their applied
methods at a glance:

1) An accuracy of 91 percent was achieved by Qingguo Wei
and his co-contributors from the Tsinghua University of
Beijing. They used a combination of bandpower features
together with CSSD and mean waveforms that were cho-
sen by fisher discriminant analysis before classification
was performed with a linear SVM.

2) An accuracy of 87 percent was achieved by Paul Ham-
mon from the University of California in San Diego.
After unmixing with ICA, a combination of AR coeffi-
cients, spectral power (0-45 Hz) and wavelet coefficients
were used as features. Classification was performed with
regularized logistic regression.

3) Marginally less, 86 percent accuracy, was reached by
three submissions: By Michal Sapinski from Warsaw
University, by Mao Dawei and co-contributors from
Zhejiang University, and by Alexander D’yakonov from
Moscow State University. Their used features comprise
the offset and spectral power of hand selected chan-
nels (Michal Sapinski), the standard deviation of the
Hilbert-Huang Transform for time frequency windows
(window size: 5 Hz and 0.2 s) of seven channels (Mao
Dawei), and hand chosen features from seven channels
(Alexander D’yakonov). For classification, logistic re-
gression (Michal Sapinski) and Mahalanobis distance
(Mao Dawei) were used.

Taking a closer look on solutions above 60 percent accuracy,
discriminant analysis (linear, robust etc.) dominates the clas-
sification methods by 4 entries before (linear) support vector
machines with 3 entries. Furthermore logistic regression or
mahalanobis/fisher distance was used for two submissions
each. Successful methods showed a tendency to use a combi-
nation of different feature types.

Fig. 2 takes a closer look onto the difficulty the contri-
butions had with certain test vectors. Most test vectors were
classified correctly but around trial 40 (in chronological order,
not in competition order), many misclassifications occurred.
One interpretation is non-stationarity in the signals caused by
eleptiform patterns in the EEG which did arise frequently for
this patient.

No. of Correctly Submitted Labels per Test Vector
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Chronological: Difficulty of Test VectorsHistogram: Difficulty of Test Vectors

Fig. 2. Difficulty of test vectors from the contributor’s point of view. The
left histogram shows that no vector was misclassified by every submission
and that many vectors received correct labels from 20 or more submissions.
Another view on this distribution provides the right graph. It shows the number
of correctly submitted labels for every trial in chronological order (the order
was randomized for the competition). Around trial no. 40 many trials were
not classified correctly.

III. D ATA SET II: P300 SPELLER PARADIGM

This data set was provided by the Wadsworth Center, New
York State Department of Health (head: Jonathan R. Wolpaw).

A. Description of the data set

This data set represents a complete record of P300 evoked
potentials (five sessions from two subjects) recorded with the
BCI2000 software [19], using a paradigm described in [20] and
originally by Farwell and Donchin [21]. In these experiments,
the user was presented with a 6 by 6 matrix of 36 different
alphanumeric characters. The user’s task was to sequentially
focus attention on characters from a word that was defined by
the investigator. The 6 rows and 6 columns of this matrix were
successively and randomly intensified at a rate of 5.7 Hz. Two
out of 12 intensifications of rows or columns highlighted the
desired character (i.e., one particular row and one particular
column). The responses evoked by these infrequent stimuli
(i.e., the 2 out of 12 stimuli that did contain the desired
character) are different from those evoked by the stimuli that
did not contain the desired character and they are similar
to the P300 responses previously reported [20], [21]. Signals
from the two subjects were collected from 64 ear-referenced
channels (bandpass filtered from 0.1–60 Hz and digitized at
240 Hz) using the BCI2000 software. Each session consisted
of nine runs, and each run contained a single word. For each
character epoch in the run, the user display was as follows:
the matrix was displayed for a 2.5 s period, and during this
time each character had the same intensity (i.e., the matrix
was blank). Subsequently, each row and column in the matrix
was randomly intensified for 100 ms. After intensification of
a row/column, the matrix was blank for 75 ms. Row/column
intensifications were block randomized in blocks of 12. The
sets of 12 intensifications were repeated 15 times for each
character epoch (i.e., any specific row/column was intensified
15 times and thus there were 180 total intensifications for each
character epoch). Each character epoch was followed by a
2.5 s period, and during this time the matrix was blank. This
period informed the user that this character was completed
and to focus on the next character in the word that was
displayed on the top of the screen (the current character was
shown in parentheses). The resulting data for each subject was
partitioned into character epochs and divided chronologically
into two parts, the first 85 characters for training and the
remaining 100 characters for testing. The character epochs
in each training and test set were then scrambled to avert
identification of the character sequences in the test data. The
objective in the contest was to use the 85 characters per
subject of training data to construct a classifier, and to then
predict the 100 characters per subject in the unlabeled test
data. Participants were asked to report the classification results
using all 15 flash sequences and, additionally, only the first 5
flash sequences.

B. Outcome of the competition

A total of 10 submissions were received for this data set, in-
corporating a wide variety of pre-processing and classification
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methods. Using all 15 sequences, the majority of submissions
(8) predicted the test characters with at least 75 % accuracy
(accuracy expected by chance was 2.8 %). Several contestants
achieved an accuracy of over 90 %, and the winner achieved an
impressive accuracy of 96.5 % (see [12] for algorithm details).

IV. DATA SETS III A AND III B:

This data set is provided by the Institute for Human-
Computer Interfaces, University of Technology Graz – BCI
Lab (head: Gert Pfurtscheller).

A. Description of data set IIIa

The data set consists of recordings from 3 subjects; the
subjects performed 4 different motor imagery tasks according
to a cue. Sixty EEG channels were recorded and the recording
was made with a 64-channel EEG amplifier from Neuroscan,
using the left mastoid for reference and the right mastoid as
ground. The EEG was sampled with 250 Hz, it was filtered
between 1 and 50 Hz with Notchfilter on. The data of all runs
was concatenated and converted into the GDF format ([22]).
The subject sat in a relaxing chair with armrests. The task
was to perform imagery left hand, right hand, foot or tongue
movements according to a cue. The order of cues was random.
The experiment consists of several runs (at least 6) with 40
trials each each; after trial begin, the first 2s were quite, att=2s
an acoustic stimulus indicated the beginning of the trial, and
a cross ‘+’ is displayed; then fromt=3s an arrow to the left,
right, up or down was displayed for 1s; at the same time the
subject was asked to imagine a left hand, right hand, tongue
or foot movement, respectively, until the cross disappeared
at t=7s. Each of the 4 cues was displayed 10 times within
each run in a randomized order. Participants should provide
a continuous classification output (continuous in time as well
as magnitude) for all 4 classes. In other words the classifier
should provide 4 continuous traces for the whole data set
(including labeled trials, and trials marked as artifact). At each
point in time, the trace with the largest value determines the
corresponding class. Then, a confusion matrix is built from
all trials for each time-point 0.0s≤ t ≤ 7.0s . From these
confusion matrices, the time course of the accuracy and the
time-course of the kappa coefficient can be obtained. The
performance measure of the competition was the maximum
kappa value in time, averaged for the three subjects.

B. Outcome of the competition – data set IIIa

We received the following three submissions, whose perfor-
mance on the competition’s test set is shown in table II.

A Authors: Hill & Schröder (Max Planck Institute for
Biological Cybernetics, Tübingen and Tübingen Univer-
sity), Method: resampling 100Hz, detrending, Infomax
ICA, Amplitude spectra (Welch), linear PCA, and SVM
(remark: scores are constant for each trial)

B Authors: Guan, Zhang & Li (Neural Signal Process-
ing Lab Institute for Infocomm Research, Singapore),
Method: Fisher ratios of channel-freqency-time bins, fea-
ture selection, designing mu- and beta passband, multi-
class CSP, SVM

TABLE II

MAXIMUM KAPPA FORt ≤7S IN THE THREE SUBJECTS(K3, K6, L1) AND

ITS MEAN OBTAINED BY THE THREE COMPETITORSA, B AND C.

#. mean K3 K6 L1

1. B 0.79 0.82 0.76 0.80
2. C 0.69 0.90 0.43 0.71
3. A 0.63 0.95 0.41 0.52

C Authors: Gao (head), Wu & Wei (Tsinghua University,
Beijing, China), Method: surface laplacian, 8-30Hz filter,
CSP (one-vs-rest), SVM+kNN+LDA, ‘bagging’

A detailed description of the results is available from [23].

C. Description of data set IIIb

This data set IIIb contained 2-class EEG data from 3
subjects. Each data set contained recordings from consecutive
sessions during a BCI experiment. The large amount of data
should enable the use of non-stationary classifiers, because it
is reasonable to expect that time-varying classifier performs
better than a stationary (static) classifier. Moreover, based
on the experience of the second BCI competitition [6], [24],
[9], the response time of each method has to be evaluated.
The experiment consists of 3 sessions for each subject. Each
session consists of 4 to 9 runs. The data of all runs was
concatenated and converted into the GDF format [22]. The
recordings were made with a bipolar EEG amplifier from g.tec.
The EEG was sampled with 125 Hz, it was filtered between
0.5 and 30 Hz with Notchfilter on.

In order to evaluate the time delay, it was required that
the submitters provided (1) a continuous classification output,
and (2) it had to be demonstrated that the used algorithms
are causal. The output was validated using the time course of
the mutual information [25]. The method with the maximum
increase of the mutual information (maximum steepness cal-
culated as MI(t)/(t−3s) for t >3.5s) was used for validation.
In order to avoid the involuntary stimulus-response, only time
t >3.5s was evaluated. The ‘steepness’ of the mutual informa-
tion quantifies the response time. The evaluation algorithm is
provided in BIOSIG (see/biosig/t490/criteria2005IIIb.m
in [26]).

D. Outcome of the competition – data set IIIb

We received seven submissions for this data set. The fol-
lowing three submissions obtained the best performance on
the competition’s test set, see table III.

A Authors: O.Burmeister, M.Reischl, R. Mikut
(Forschungszentrum Karlsruhe, Germany), Method:
Bandbower (BP), ratios and differences of BP; MANOVA
for feature selection; SVM and linear combiner

C Author: S. Lemm (Fraunhofer-FIRST IDA, Berlin, Ger-
many), Method: ERP and ERD (mu and beta), propabilis-
tic classification model, accumulative classifier

G Authors: Xiaomei Pei, Guangyu Bin (Institute of Biomed-
ical Engineering of Xi’an Jiaotong University, Xi’an,
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TABLE III

MAXIMUM STEEPNESS(WITH t0 =3S) OF THE MUTUAL INFORMATION

[BITS/S] IN THE THREE SUBJECTS(O3, S4, X11)AND ITS MEAN

OBTAINED BY THE THREE COMPETITORSA, B AND C.

#. mean O3 S4 X11

1. C 0.32 0.17 0.44 0.35
2. A 0.25 0.16 0.42 0.17
3. G 0.14 0.20 0.09 0.12

China), Method: FFT with Hanning window of 1s-
segments; Fisher Discriminant Analysis

The main aim was to evaluate causal algorithms that are
able to provide continuous feedback as fast and as accurate
as possible. To evaluate this aim, the ‘steepness’ of the time
course of the mutual information was used as evaluation
criteria and the participants were asked to provide the source
code to prove causality.

Despite the requirement to provide the software, 7 par-
ticipants submitted results. All participants provided some
software. In several cases the software could not be tested,
because of some missing components. The software was
analyzed by visual inspection. In one case an additional delay
of 50 samples (0.4s) had to be added.

The winning algorithm is described in [14]. A detailed
description of the results is available from [23].

V. DATA SETS IVA–C: MOTOR IMAGERY

These data sets were provided by Fraunhofer FIRST, In-
telligent Data Analysis Group (head: Klaus-Robert Müller),
and Charité University Medicine Berlin, Campus Benjamin
Franklin, Department of Neurology, Neurophysics Group
(head: Gabriel Curio).

A. Description of data set IVa

All three data sets share the same type of training sessions.
Visual cues indicated for 3.5 s which of the following 3 motor
imageries the subject should perform: (L)left hand, (R)right
hand, (F) rightfoot. (For IVb and IVc (R) was replaced by (Z)
tongue(=Zunge in german)). The presentation of target cues
were intermitted by periods of random length, 1.75 to 2.25 s
in which the subject could relax.

There were two types of visual stimulation: (1) where
targets were indicated by letters appearing behind a fixation
cross (which might nevertheless induce little target-correlated
eye movements), and (2) where a randomly moving object in-
dicated targets (inducing target-uncorrelated eye movements).

Data set IVa poses the challenge of getting along with only
a little amount of training data. One approach to the problem
is to use information from other subjects’ measurements to
reduce the amount of training data needed for a new subject.
Of course, competitors could also try algorithms that work
on small training sets without using the information from
other subjects. For this purpose the data sets from five healthy
subjects (aa,al,av,aw,ay) have been splitted differently into

TABLE IV

THE TOTAL OF 280 TRIALS WAS SPLITTED DIFFERENTLY INTO TRAINING

AND TEST FOR EACH SUBJECT. HAVING ONLY A SMALL AMOUNT OF

TRAINING SAMPLES POSES A PROBLEM. THIS TABLE SHOWS THE

RESPECTIVE NUMBER OF TRAINING(LABELLED ) TRIALS (#TRAINING)

AND TEST (UNLABELLED ) TRIALS (#TEST) FOR EACH SUBJECT.

subject #training #test

aa 168 112
al 224 56
av 84 196
aw 56 224
ay 28 252

training and test sets, see table IV. Only trials of classesright
and foot were available to the competitors. The performance
measure was the overall accuracy. Note that this is not equal
to the average across subjects, due to the differently sized test
sets. Rather the performance on subjects with large test sets
(= small training sets) is weighted stronger.

B. Outcome of the competition – data set IVa

There were 14 submissions for this data set. The winning
team is Yijun Wang and collegues from Tsinghua University,
Beijing, China. They received accuarcies of 96/100/81/100/98
for the five subjects and an overall accuracy of 94.2 %. This
is an excellent performance when considering that the second
(Yuanqing Li from the Institute for Infocomm Research,
Singapore) and the third best (Liu Yang, National University
of Defense Technology, Changsha, Hunan) achieved 85.1 resp.
83.5 %.

The winning team examined three types of features:
(1) ERD-feature extracted by Common Spatial Pattern (CSP)
analysis, (2) ERD-feature extracted with an AR model, and
(3) ERP-feature extracted by LDA on temporal waves. For
subjectsaa and aw all three features have been used and
combined by a bagging method. For the other 3 subjects only
the CSP-based feature was used. To account for the small
training sets in subjectsaw and ay a special technique was
employed in which formerly classfied test samples are added
to the training samples, cf. [15].

C. Description of data set IVb

Data set IVb poses the problem of classifying in an asyn-
chronous protocol design, i.e., there are no cues indicating that
the subject switches to a perdefined mental target class. Rather
the subject is by default in an idle state and can spontaneously
switch into a mental state that is related to BCI control (here
left or foot imagery). Also the duration of being in that mental
state can arbitrarily be decided by the subject. This is in
contrast to most classification analyses, which are performed
on cued EEG trials, i.e., windowed EEG signals of fixed
length, where each trial corresponds to a specific mental state
(synchronous protocol). The training data follwed the same
experimental setup as in data set IVa. For the competition’s
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test data set the target classes (left, footandrelax) were ordered
by acoustic stimuli in order to have the true labels. The length
of those active periods varied between 1.5 and 8 s, intermitted
by periods of 1.75 to 2.25 s. The task of the competitors was
to give an output signal for each time point of the continuous
signals provided as test data. During the intervals of idle state
(relax) the output is supposed to be small in magnitude (ideally
0), while in periods ofleft resp.foot imagery it should be (near
to) -1 resp. 1. Note that there are no sample trials for class
relax in the training data. Rather it has to be defined as absense
of the mental states that are used for control. Performance was
to be measures by mean square distance of submitted classifier
outputs and labels.

D. Outcome of the competition – data set IVb

Unfortunately, for this data set we received only one submis-
sion. So we cannot given an evaluation and elect a winner for
this data set. Nevertheless we would like to thank Han Yuan
and Yijin Wang from Tsinguhua University very much for their
submission. We regret having not receive more submissions for
this particular data set, since we think that it poses a highly
relevant and difficult challenge.

E. Description of data set IVc

Data set IVc poses, like IVb, the problem that for a certain
amount of test trials the subject was in idle state, i.e., he did
not perform motor imagery (classrelax). The training data for
data set IVc is the same as the one for IVb. The experimental
setup for the test data was similar to the training sessions, but
the motor imagery had to be performed for 1 second only,
compared to 3.5 seconds in the training sessions. The length
of the intermitting periods ranged from 1.75 to 2.25 seconds as
before. The test data was recorded more than 3 hours after the
training data, so the distribution of some EEG features could
be effected by long-term non-stationarities. The performance
criterium is the mean squared error with respect to the target
vector that is -1 for classleft, 1 for foot, and 0 for relax,
averaged across all trials of the test set.

F. Outcome of the competition – data set IVc

Seven competitors submitted their results to this data set.
The winners are Dan Zhang and Yijun Wang from Tsinghua
University, Beijing, China. They obtained a mean square error
of 0.3 which is much lower than the result of the second
best competitor, who achieve 0.59. The different performance
becomes explicitly apparent when turning the attention to what
the specific challenge of this data set was, the trials of idle state
in the test data. These should have been mapped to 0 while left
hand and foot motor imagery should have been mapped as -1
and 1 respectively. Fig. 3 shows the histograms of classifier
outputs of the two best submissions. Ideally outputs toleft
and foot events should all be -1 resp. 1 and outputs torelax
events (idle state) should be zero. The second best submission
performance remarkably well on motor imagery trials but
absolutely fails to recognize the idle state trials (as do the
other five submissions). The best submission achieves a similar
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Fig. 3. Histograms of classifier outputs for the two best submissions on data
set IVc. Both methods perform well on the motor imagery samples (left and
foot, but only the winning algorithm manages to identify (most of) the idle
state samples (relax).

good classification of the left and foot imagery events although
there are some false negatives. But the particular strength of
the method is that it manages to identify more than half of the
idle state trials.

The winning team extracted ERD-features by the Common
Spatial Subspace Decomposition (CSSD, cf. [27]) method and
classified with Fisher Discriminant Analysis. Trials of the
relax class were detected in a first-pass classification operating
on prolonged windows, while the second-pass classified the
remaining trials intoleft vs. foot, cf. [16] for details.

VI. DATA SETS V: MULTI -CLASS PROBLEM, CONTINUOUS

EEG

This data set was provided by the IDIAP Research Institute.

A. Description of the data set

This data set was recorded from three healthy subjects
during four sessions with no feedback. The subject sat in
a normal chair, relaxed arms resting on their legs. There
are 3 tasks: imagination of repetitive self-pacedleft hand
movements, imagination of repetitive self-pacedright hand
movements, and generation ofwordsbeginning with the same
random letter. All 4 sessions of a given subject were acquired
on the same day, each lasting 4 minutes with 5-10 minutes
breaks in between them. The subject performed a given task
for about 15 seconds and then switched randomly to another
task at the operator’s request. Thus EEG data is not split in
trials since the subjects are continuously performing any of the
mental tasks. It is worth noting that while operating a brain-
actuated application [28], [29], the user does essentially the
same as during the recording sessions. The only difference is
that in the former case he/she switches to the next mental task
as soon as the desired action has been performed, i.e., typically
much faster than the 15 s pace in the training sessions.
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EEG potentials were measured with a Biosemi portable
system using a cap with 32 integrated electrodes located at
standard positions of the International 10-20 system. The
sampling rate was 512 Hz. Signals were acquired at full DC.
No artifact rejection or correction was employed.

Data were provided in two ways, namely, the raw EEG
potentials from all 32 electrodes and precomputed features (as
described in [30]). The precomputed features were obtained as
follows. The raw EEG potentials were first spatially filtered
by means of a surface Laplacian. Then, every 62.5 ms —i.e.,
16 times per second— the power spectral density (PSD) in
the band 8–30 Hz was estimated over the last second of data
with a frequency resolution of 2 Hz for the 8 centro-parietal
channels C3, Cz, C4, CP1, CP2, P3, Pz, and P4. As a result,
an EEG sample is a 96-dimensional vector (8 channels times
12 frequency components).

For each subject there are 3 training files and 1 testing file
(the last recording session). The algorithm should provide an
output every 0.5 seconds using the last second of data. That is,
the goal for the competition was to estimate the class labels for
every input vector (either derived from overlapping segments
of 1 second of raw EEG data or precomputed sample) of the
3 test files (one per subject).The labels should be estimated in
the following way:

1) Precomputed features: Since input vectors are computed
16 times per second, provide the average of 8 consecu-
tive samples (so as to get a response every 0.5 seconds).

2) Raw signals: Compute vectors 16 times per second using
the last second of data. Then provide the average of 8
consecutive samples (so as to get a response every 0.5
seconds).

In both cases (precomputed features and raw signals), other
(i.e. also past) samples must not be used in order to guar-
antee a fast response times of the system, although for the
competition test data set averaging over more samples could
be of benefit. The performance measure is the classification
accuracy (correct classification divided by the total number of
samples) averaged over the 3 subjects.

B. Outcome of the Competition

There were 26 submissions for this data set, 20 using
precomputed features and 6 using raw data. Unfortunately, 4
of the entries did not understand the requirement of using
only 1 second of data for estimating the labels and their
methods included smoothing consecutive classifier output on
longer time windows. Since these results are not comparable
to the others, we took them out of the regular scoring.
Surprisingly, the best methods used precomputed features. The
best submission was by Ferran Galán and colleagues (Univ. of
Barcelona) with an error of 31.3 %, but the second-best entry
by Xiang Liao (Univ. of Electronic Science and Technology
of China) was very close with an error of 31.5 %. In addition,
there were 9 contributions with errors between 34.1 % and
40.0 %, of which only one based on raw signals.

VII. C ONCLUSION AND OUTLOOK

Looking at all the winning algorithms of the BCI Compe-
tition III reveals several very interesting aspects. (1) Almost

all classification methods are linear, which contributes to the
linear vs. non-linear debate, cf. [31]. Most popular methods
are Fisher Discriminant and linear Support Vector Machines,
both introduced in [32] to the field of BCI. (2) In all but one
(data set V) cases where multi-channel EEG and oscillatory
features were available the winning method used CSSD ([27])
resp. CSP, which was suggested for the use in BCI context in
[33]. (3) Several of the winning algorithms incorporated the
concept of combining oscillatory (ERD) and non-oscillatory
(ERP) features (data sets I, IIIb, IVa), first proposed in [34],
[35].

Regarding the distribution of the top performances for each
data set we have been astonished by the fact the in all cases
except data set V there was a substantial gap between the best
and the second best submission, cf. [10]. This is in contrast
to the last BCI Competiton, cf. [24], [9] where in most cases
the top competitiors had a neck-and-neck race. On the other
hand it is interesting to compare the performance achieved
on data from different subjects (when available) performing
the same mental tasks. In data set IIIa, for example, the best
submission achieved an across-subject average kappa value
of 0.79 while the least successful submission had a kappa
value of 0.64. But on the first of three subjects (K3) the latter
submission achieved a very good kappa value of 0.95 where
the winner only got 0.82. In data set IIIb the third best team
obtained the best result for the first subject (O3) but failed for
the second subjects (S4) with a value of 0.09 which is very
low compared to 0.44 of the winner. This observation gives
raise to the conjecture that brain signals are so specific and
divers that specific algorithms are needed. The problem is to
select the best suited method given only the training data.

The are some highly relevant topics in BCI research that
were not addressed by this competition: (1) transfer of methods
and paradigms from offline analyses to feedback applications;
(2) optimizing learning in the interaction of two mutually
adapting systems human and machine. A complete validation
of BCI approachs with regard to those issues within a compe-
tition framework would necessitate that all competitors submit
real-time versions of their methods which are then tested in
a series of online feedback experiments in the hosting BCI
laboratories. This could be a new and ambitious objective of
a future BCI competition but the effort can be expected to be
very high.

The data sets and their descriptions will continue to be
available on the competition web page [7]. Other researchers
interested in EEG single-trial analysis are welcome to test
their algorithms on these data sets and to report their results.
To imitate competition conditions, all selections of method,
features and model parameters must be confined to the training
sets. However, due to the current availability of the labels of
the test data and the publication of thorough analyses of these
data, future classification results of the competition data cannot
fairly be compared to the original submissions.
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