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Abstract

Analyzing brain states that correspond to event related potentials (ERPs) on a single trial basis is
a hard problem due to the high trial-to-trial variability and the unfavorable ratio between signal
(ERP) and noise (artifacts and neural background activity). In this tutorial, we provide a compre-
hensive framework for decoding ERPs, elaborating on linear concepts, namely spatio-temporal
patterns and filters as well as linear ERP classification. However, the bottleneck of these tech-
niques is that they require an accurate covariance matrix estimation in high dimensional sensor
spaces which is a highly intricate problem. As a remedy, we propose to use shrinkage estima-
tors and show that appropriate regularization of linear discriminant analysis (LDA) by shrink-
age yields excellent results for single-trial ERP classification that are far superior to classical
LDA classification. Furthermore, we give practical hints on the interpretation of what classifiers
learned from the data and demonstrate in particular that the trade-off between goodness-of-fit
and model complexity in regularized LDA relates to a morphing between a difference pattern of
ERPs and a spatial filter which cancels non task-related brain activity.
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pattern

1. Introduction

Designated as one of the final frontiers of science, understanding brain function is a challenge
that keeps attracting scientists from a multitude of disciplines. Early research efforts culminated
in the emergence of computational neuroscience, the principal theoretical method for investigat-
ing the mechanisms of the nervous system. In particular, the interest in modelling single-trial
behavior of the human brain has rapidly grown in the past decades. Nowadays the scope of mod-
ern neuroscience has been widened to decoding single-trial encephalogram data with respect to
the identification of mental states or human intentions. This branch of research is strongly influ-
enced by the development of an effective communication interface connecting the human brain
and a computer ([19, 33, 35, 76, 5, 52, 16, 77, 34]), which finally also attracted the machine
learning community to the field [6, 69, 27, 47, 11, 50, 7, 8, 74, 49, 67]. In this context the abil-
ity to perform single-trial classification of EEG data received much attention. But there is also
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interest from the basic research in single-trial analysis of event-related potentials (ERPs), where
mainly the question of trial-to-trial variability is addressed (e.g., [55]).

Generally, the analysis of single-trial responses suffers from the superposition of task-relevant
signals by task-unrelated brain activities, resulting in a low signal-to-noise ratio (SNR) of the ob-
served single-trial responses. Here, in the context of single-trial classification of ERPs, we refer
to the ERPs as the signals and to all non-phase-locked neural activity as well as to non-neural
artifacts as interfering noise. Accordingly, the major goal of data processing prior to the clas-
sification of single-trial ERPs is to enhance their SNR significantly, in other words, isolating
the phase-locked ERP signal from the interfering noise. To distinguish signals of interest from
the interfering noise, different feature extraction methods have been applied, including temporal
and spatial filters. Here, the most prevalent techniques are bandpass, notch or Laplace filters as
well as principle component analysis (PCA) and more sophisticated techniques such as wavelet
denoising [53] and blind source separation (BSS) techniques [13, 14, 2, 40, 78, 37]. To these ex-
tracted features, different classification techniques have been applied, that can be either assigned
to linear or non-linear methods. Among the non-linear methods the support vector machine is
the most powerful method applied to ERP classification ([46, 42, 54]). However, there is an
ongoing debate whether the classification of single-trial EEG requires a non-linear model or if
a linear model is sufficient given an appropriate feature extraction [43]. However, regardless of
the particular techniques employed for feature extraction or classification, there is substantial
variability in the classification accuracy both between subjects [26, 7, 30, 25, 17, 1] and within
subjects during the course of an experiment [62]. It was shown in online studies that adaptation
techniques can help to cope with the corresponding changes of the data distributions [71, 72, 69].
Furthermore, there are other techniques that have been found promising in the same respect in
offline studies, namely explicitely modeling the distribution change (cf. [66]), restricting the fea-
ture space to the stationary part only (cf. [73]), or enforcing invariance properties in the feature
extract step (e.g. [9]).

The rest of the paper is structured as follows. First, we introduce an EEG sample data set
that is used throughout this paper for illustration and validation purpose and thereupon we define
spatial, temporal, and spatio-temporal features. In Section 3, we introduce the concept of spatial
patterns and filters within the framework of the linear EEG model and give a first argument on
why an effective spatial filter will typically look much different from a pattern. Then, we discuss
LDA and the plausibility of the assumptions underlying the optimality criterion in the context of
EEG. Futhermore, we provide an illustrative simulation as another argument for the fundamental
difference between spatial patterns and filters. After that, we introduce the important concept
of regularization of the empirical covariance matrix by shrinkage and a method to determine
the optimal shrinkage parameter. In Section 5, the introduced concepts of machine learning are
applied to one example data set to illustrate the interpretation of the classification method. An
extensive validation of the proposed method on 13 data sets is provided in Section 6 including a
comparison of the performance with state-of-the-art methods. Finally, we summarize the findings
in a conclusion.

2. Example Data Set

We introduce an example EEG data set that we use throughout the paper to exemplify fea-
ture extraction and classification methods. The data set stems from a calibration recording for
an attention-based typewriter. It provides a good show-case, because it comprises a sequence of
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Figure 1: Experimental design: Symbols can be selected in the mental typewriter Hex-o-Spell in a two level procedure.
(a) At the first level, a disc containing a group of 5 symbols is selected. (b) For the second level, the symbols of the
selected group are distributed to all discs (animated transition). The empty disc can be used as ‘undo’ to return to the
group level without selection. Selection of the backspace symbol ‘<’ allows to erase the last written symbol.

ERP components that reflect different brain processes, related to visual processing of the phys-
ical stimulus properties as well as higher cognitive components associated with more abstract
processing of the visual event. This data set will serve as a touchstone for the machine learning
techniques presented in this paper. Furthermore, we will argue that these techniques can also be
used as a tool to study the underlying visuo-cognitive processes.

Attention-based typewriting was introduced by [22]. The so called Matrix Speller consists of
a 6×6 symbol matrix wherein symbols are arranged within rows and columns. Throughout the
course of a trial, the rows and columns are intensified (‘flashed’) one after the other in a random
order. Since the neural processing of a stimulus can be modulated by attention, the ERP elicited
by target intensifications is diffferent from the ERP elicited by nontarget intensifications. Several
improvements on the original approach have been suggested, see [41, 27, 57, 31, 39].

The present data is based on a novel variant of Hex-o-Spell ([68]), a mental typewriter which
was originally controlled by means of motor imagery [75, 10, 44] while the new variant is based
on ERPs. The Hex-o-Spell realizes selection of a target symbol in two recurrent steps. At the first
level, the group containing the target symbol is selected, followed by the selection of the target
symbol itself at the second level. Groups of symbols (level 1) and single symbols (level 2) are
arranged in six circles that are placed at the corners of an (invisible) hexagon, see Fig. 1. For the
selection at each level, the circles are intensified in random order (10 blocks of intensifications
of each of the 6 discs).

Intensification was realized by upsizing the disc including the symbol(s) by 62.5% for 100 ms
with a stimulus onset asynchrony of 166 ms, see Fig. 1. Participants were instructed to fixate
the target symbol (checked online with an eye tracker) while silently counting the number of
intensifications of the target symbol. For a detailed comparision between Matrix Speller and the
ERP-based Hex-o-Spell, in particular concerning the issue of eye gaze, see [68].

The data set used in this paper was recorded in an offline calibration mode, that means brain
3



signals are not classified online and the application behaves as if all decisions are classified
correctly. A text field at the top of the screen displays the words that are to be ‘written’ with
the current symbol shown in red and larger font size, see Fig. 1. After the first level stimulation
is finished, the second level starts automatically with the correct subgroup. Such calibration is
recorded in order to train the classifier and optimize parameters.

From the classification point of view, the task can be reduced to the discrimination of brain
responses to target stimuli (intensifications of discs that the user draws attention to) and nontarget
stimuli. If this binary discrimination problem can be solved, the system can obviously determine
the intended letter. Single-trial classification of these brain responses in most users lacks accu-
racy. Ten repetitions of stimulus sequences are performed in the calibration, which allows to
investigate the optimal number of repetitions for the use in subsequent online experiments.

ERPs for the Hex-o-Spell data set in one particular participant1 are shown in Fig. 2. Spatial
distributions are shown for several subcomponents, determined from those time intervals that are
shaded in the ERP curve on top. As the figure suggests, some components are related to the pro-
cessing of the physical properties of the stimulus in primary visual areas in occipital cortex (the
according component labels are tagged with the prefix ‘v’ for visual). Other components reflect
more abstract processes of attentional gating and event detection and they are characterized by a
more central topographic distribution.

Since all of these components can be modulated by attention and eye fixation, all intervals are
potentially informative regarding the classification task. However, the fact that trial-to-trial vari-
ability of ERP amplitudes is extremely high in both target and nontarget classes (not shown in the
graph) renders the classification problem a hard one. It requires the application of sophisticated
machine learning methods, as introduced next.

2.1. Features of ERP Classification

ERP components are characterized by their temporal evolution and the corresponding spatial
potential distributions. As raw material, we have the spatio-temporal data matrix2 X(k) ∈ RM×T

for each trial k with M being the number of channels and T the number of sampled time points.
For the formalism in classification, features are considered to be column vectors, which are ob-
tained by concatenation of all columns of X(k) into x ∈ RM·T . Time is typically sampled in
equidistant intervals, but it might be beneficial to select specific intervals of interest correspond-
ing to subcomponents or an ERP complex, see Section 5.3. Therefore, we give the following
formal definition of spatio-temporal features. We denote the scalp potential at channel c and
time point t within trial k by x(k)

c (t) (superscript k will be omitted). Given a subset of channels
C = {c1, . . . , cM} we define xC(t) = [xc1 (t), . . . , xcM (t)]> as the vector of potential values for the
subset of channels at time point t.

By concatenation of those vectors for all time points t1, . . . , tT of one trial one obtains spatio-
temporal features

(1) X(C) = [xC(t1), . . . , xC(tT )].

1For illustration purpose here and in Sections 4 and 5, we use single-subject data from Hex-o-Spell data set, while
the validation in Section 6 is performed on data from all 13 participants and for both typewriter types, Hex-o-Spell and
the Matrix Speller.

2Throughout this manuscript, italic characters refer to scalars such as t and M; a bold lower case character as in a
denotes a vector; matrices are indicated by uppercase bold characters, such as A; while the transpose of a vector and a
matrix is consistently denoted by a> and A>, respectively.
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Figure 2: ERPs in the attention based typewriter. Every 166 ms one disc of the typewriter was intensified for 100 ms
(indicated by solid bars at the bottom of the time course plot). According to whether or not it was the to-be-attended
disc, trials were labelled as targets or nontargets, respectively. Brain responses to target stimuli are characterized by a
sequence of different ERP components. The graph on top shows the time course of the ERPs at channel Cz and the
average of channels PO7 and PO8. The baseline was taken -166 to 0 ms prestimulus indicated by the horizontal gray bar
around the x-axis. The trial-to-trial standard deviation is between 6.7 and 9µV at channel Cz and between 4.7 and 6.5µV
at channel (PO7+PO8)/2. The two rows below display scalp topographies for the two experimental conditions at the time
intervals that are shaded in the ERP plot. The maps show a top view on the head with nose up where the averaged scalp
potentials obtained for each electrode are spatially interpolated and coded in color.
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It can be helpful for classification to reduce the dimensionality of those features by averaging
across time in certain intervals. These can be equally spaced (subsampling), or specifically cho-
sen, preferably such that each interval contains one component of the ERP in which the spatial
distribution is approximately constant, see Section 5.3. Therefore, we use the follwing more
general definition.

Let T1, . . . ,TI sets of time points (each Ti typically being an interval). Given selected chan-
nels C and time intervals T = 〈Ti〉i=1,...,I , we define the spatio-temporal feature as

(2) X(C,T ) = [mean 〈xC(t)〉t∈T1
, . . . ,mean 〈xC(t)〉t∈TI

].

For the case that there is only one time interval (i.e., I = 1), we call the features (purely) spatial
(but it relates to the temporal domain). In this case, the dimensionality of the feature coincides
with the number of channels. The feature of a single trial is the average scalp potential within the
given time interval (at all given channels). Otherwise, when C is a singleton {c1} (i.e., M = 1),
we say X is a temporal feature (at channel c1). In this case, the feature of a single trial is the
‘time course’ of scalp potentials at the given channel, sampled at time intervals T1, . . . ,TI .

To discuss the distribution of ERP features, we consider a simplified model. We model each
single trial x(k)(t) as the superposition of a (phase-locked) event-related source s(t) (= ERP) which
is constant in every single trial and ‘noise’ (non phase-locked activity) n(k)(t), which is assumed
to be identically independent distributed (iid) according to a Gaussian distribution N(0,Σn) (for
a fixed t).

(3) x(k)(t) = s(t) + n(k)(t) for all trials k = 1, . . . ,K

Under this model assumption, the spatial feature, say, at time point t0 is Gaussian distributed
according to N(s(t0),Σn). This means that ERP features are Gaussian distributed with the mean
being the ERP pattern and the covariance being the covariance of ongoing background EEG, see
Fig. 3.

The assumption of the ERP being the same within each trial is known to be invalid. E.g.,
amplitude and latency of the P3 component depend on many factors that vary from trial to trial,
such as time since last target and attention. In this case, the covariance of the data distribution
comprises also the trial-to-trial variation of the ERP. Nevertheless, these variations in the ERP
are typically small compared to the background noise, such that Eq. (3) still holds well enough
to provide a useful model.

3. Spatial Filters and Spatial Patterns

The basic macroscopic model of EEG generation [48] assumes the tissue to be a resistive
medium and hence only considers effects of volume conduction, while neglecting the marginal
capacitive effects [64]. Subject to these prerequisites, a single current source s(t) contributes
linearly to the scalp potential x(t), i.e.,

(4) x(t) = as(t),

where the propagation vector a ∈ RM represents the individual coupling strengths of the source
s to the M surface electrodes. In general, the propagation vector a depends on three factors;
the conductivity of the intermediary layers (brain tissue, skull, skin); the spatial location and
orientation of the current source within the brain; and the impedances and locations of the scalp
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Figure 3: Distribution of ERP Features. Scalp potentials of each single trial have been averaged across time within
the interval of the visual N1 component (155–195 ms). The dots show the distribution of those values for channels Cz
and PO7 separately for the two conditions ‘target’ (cyan) and ‘nontarget’ (orange). Means of the two distributions are
marked by crosses. Classwise covariance matrices have been used to indicate a fitted Gaussian distribution by equidensity
contours at 1.5 times standard deviation. Note, that the covariance of both conditions is very similar.

electrodes. In order to model the contribution of multiple source signals s(t) = (s1(t), s2(t), . . .)>

to the surface potential, the propagation vectors of the individual sources are aggregated into a
matrix A = [a1, a2, . . .] and the overall surface potential results in

(5) x(t) = As(t) + n(t).

This model also incorporates an additive term n(t), which comprises any contribution not de-
scribed by the matrix A. Although some of the originating sources might be of neocortical
origin, n(t) is conventionally conceived as noise, emphasizing that those activities are not subject
of the investigation. The propagation matrix A is often called the forward model, as it relates the
source activities to the signals acquired at the different sensors. In this regard, the propagation
vector a of a source s is often referred to as the spatial pattern of s, and can be visualized by
means of a scalp map.

The reverse process of relating the sensor activities to originating sources, is called backward
modeling and aims at computing a linear estimate of the source activity from the observed sensor
activities:

(6) ŝ(t) = W>x(t).

A source ŝ is therefore obtained as a linear combination of the spatially distributed information
from the multiple sensors, i.e., ŝ(t) = w>x(t). In general, the estimation of the backward model
corresponds to a reconstruction of the sources by means of inverting the forward model. In
case of a non-invertible matrix A a solution can be obtained only approximatively. For example,
the recovering of the sources given by the forward model A by means of a least mean squares
estimator, that is

(7) W = argmin
V

∑
t

||V>As(t) − s(t)||2,
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leads to a solution of the pseudo-inverse of A, i.e.,

(8) Ŵ> = (A>A)−1A>.

However, generally the forward model is not known and the goal of backward modelling is to find
a suitable linear transformation W> of the data which leads to an improved signal to noise ratio
(SNR) of signals of interest. Accordingly, the rows w> of the matrix W> are commonly referred
to as spatial filters. Although the spatial filters w> can be visualized by means of scalp maps,
their interpretation is not as straightforward as for the spatial patterns, cf. also the discussion in
Section 4.2. To see this, consider the following simplified noise free example of two sources s1
and s2 given with their corresponding propagation vectors a1 and a2, respectively. The task is to
recover the source s1 from the observed mixture x = a1s1 + a2s2. In general, a linear filter w>
yields w>x = w>a1s1 + w>a2s2. If we suppose the two propagation vectors to be orthogonal,
i.e., a>1 a2 = 0, it follows immediately that the best linear filter is given by w> = a>1 and s1 can
be perfectly recovered (up to scaling) by ŝ1 = ‖a1‖

2s1. Hence in case of orthogonal sources
the best filter corresponds to the propagation direction of the source, i.e., a pattern. However,
changing the setting slightly and assuming non-orthogonal propagation vectors, i.e., a>1 a2 , 0,
the signal along the direction a1 also consists of a portion of s2. In order to obtain the optimal
filter to recover s1 the filter has to be orthogonal to the interfering source s2, i.e., w>a2 = 0, while
having a positive inner product w>a1 > 0. Thus the optimal filter has to take the propagation
vectors of both sources into account and is given by the first row of the pseudo-inverse of [a1 a2].
Consequently, the spatial filters depend on the scalp distributions not just of the reconstructed
source, but also on the distribution of the other sources. Moreover, the signal that is recovered by
a spatial filter w> also captures the portion of the noise that is collinear with the source estimate:
ŝ(t) = s(t) + w>n(t). Hence a spatial filter which optimizes the SNR of a signal of interest must
be approximatively orthogonal against interfering sources and noise signals.

For a comprehensive review on spatial filters and linear analysis of EEG we refer to [51] and
for a tutorial on optimal spatial filters for features based on oscillatory brain activity (cf. [12]).

4. Linear Classification

In this paper, we demonstrate how a basic classification algorithm, Linear Discriminant Anal-
ysis (LDA), can become a powerful tool for the classification of ERP components when endowed
with a technique called shrinkage for the use with high dimensional features. This technique is
simple to implement, computationally cheap, easy to apply, and yet—to our experience—gives
impressive results that are at least on the same level with state-of-the-art classification methods
that are more complex, see Section 6. Of course, the applicability of LDA with shrinkage is
by no means restricted to classification of ERP components but is a general technique for linear
classification.

4.1. Linear Discriminant Analysis

For known Gaussian distributions with the same covariance matrix for all classes, it can
be shown that Linear Discriminant Analysis (LDA) is the optimal classifier in the sense that
it minimizes the risk of misclassification for new samples drawn from the same distributions
([21]). Note that LDA is equivalent to Fisher Discriminant Analysis and Least Squares Regres-
sion ([21]). The optimality criterion relies on three assumptions:
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(1) Features of each class are Gaussian distributed. Due to our experience, features of ERP
data satisfy this condition quite well, see also Section 2.1, and the method is quite robust
to deviations from the normality assumption. For other type of features one can often find
a preprocessing to approximately achieve Gaussian distributions, see [18, 38]. But, e.g.,
inherently multi modal data would require a particular preprocessing or classification.

(2) Gaussian distributions of all classes have the same covariance matrix. This assumption
implies the linear separability of the data. It is approximately satisfied for many ERP
data sets as the ongoing activity is typically independent of the different conditions under
investigation, see also Fig. 3 and the discussion regarding distributions of ERP features
in Section 2.1. But this is not necessarily so. When comparing ERPs related to different
visual cues, the visual alpha rhythm may be modulated by each type of cue in a different
way. Fortunately, LDA is quite robust in cases of different covariance matrices. On the
other hand, modelling a separate covariance matrix for each class leads to a nonlinear
separation (quadratic discriminant analyses, for QDA, see [21, 23, 71] and for kernel based
learning see [46]) that is much more sensible to errors in the estimation of the covariance
matrices and therefore often yields inferior results to LDA unless a large number of training
samples is available.

In the current data set, we verified the assumption by inspecting scalp topographies of the
principal components corresponding to the largest eigenvalues of the covariance matrices,
see Fig. 4.

(3) True class distributions are known. This assumption is obviously never fulfilled in any real
application. Means and covariance matrices of the distributions have to be estimated from
the data. Due to the inevitable errors in those estimates the optimality statement might not
hold at all, even when the assumptions (1) and (2) are met quite well. This is typically the
case, when the number of training samples is low compared to the dimensionality of the
features. For this case, we will see later that shrinkage estimators are an excellent option
to apply, see Section 4.3.

It is our firm belief, that it is vital to comprehend all aspects of the classification, and thus to
be able to follow all steps of the process in the analysis for a particular data set, rather than to treat
the method as a black box. To this end, we start by discussing linear classification interpreting
what was ‘learned’ by the classifier. In this respect, it is important to remember the notions of
filters and patterns, see Section 3. For illustration purpose, we utilize so-called spatial features,
that were introduced in Section 2.1.

4.2. Understanding Linear Classifiers
Binary linear classifiers can be characterized by a projection vector w and a bias term b

referring to the separating hyperplane w>x + b = 0. The classification function assigns a given
input x ∈ RN the class label according to sign(w>x + b). The projection vector of LDA is defined
as

(9) w = Σ̂−1
c (µ̂µµ2 − µ̂µµ1)

where µ̂µµi is the estimated mean of the class i and Σ̂c = 1/2(Σ̂1 + Σ̂2) is the estimated common co-
variance matrix, i.e., the average of the class-wise empirical covariance matrices Σ̂i, see Eq. (11)
below.
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(a) Class target (b) Class nontarget

 pc #1:  std= 54.2 µV  pc #2:  std= 26.6 µV

 pc #3:  std= 15.4 µV  pc #4:  std= 11.6 µV

 pc #1:  std= 55.5 µV  pc #2:  std= 26.8 µV

 pc #3:  std= 15.1 µV  pc #4:  std= 10.6 µV

[a.u.]
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Figure 4: Verification of the assumption of equal covariance matrices. An eigenvalue decomposition was performed
for the covariance matrices of the two conditions target and nontarget (for spatial features at 220 ms post stimulus, but
results for other time points/intervals look similar). The eigenvectors (or principal components) corresponding to the
four largest eigenvalues are visualized as scalp topographies (as the scaling is arbitrary, the maximum absolute value is
chosen to be 1 and the scale of the colormap ranges from -1 to 1 [arbitrary unit]). The similarity of the corresponding
maps for the two classes can be seen as an indication that the covariance matrices of the two classes can be assumed to
be equal.
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w ∼ Σ̂−1(µµµ2 − µµµ1) w ∼ µµµ2 − µµµ1

accounting for the

spatial structure

of the noise

Figure 5: Weight vector of a linear classifier displayed as scalp topography. When a linear classifier is trained on spatial
features (see Section 2.1), the obtained weight vector can coherently be displayed as scalp topography. In this example,
a classifier was trained on the spatial feature extracted from the time interval 205–235 ms. The topography on the left
displays the spatial filter calculated with LDA. The right maps shows the ‘filter’ that was obtained under the assumption
that the common covariance matrix is spherical. Note, that in this particular case the filter is the pattern of the difference
of the two ERPs.

In the following, we consider applying LDA to spatial features (see Section 2.1) and provide
an insightful interpretation in terms of spatial filters and patterns and a good visualization. But
the principles apply to other types of features, too.

A linear classifier that was trained on spatial features can also be regarded as a spatial filter
(cf. Section 3). Thus, the linear classifier may be interpreted as a “backward model” to recover
the signal of discriminative sources, cf. also [49]. Let w ∈ RM be the weight vector and Y ∈
RM×#time points be continuous EEG signals. Then

(10) Y f := w>Y ∈ R1×#time points

is the result of spatial filtering: each channel of Y is weighted with the corresponding component
of w and summed up. The weight vector w of the classifier can be displayed as scalp map, but its
interpretation requires some background knowledge, see also the discussion in Section 3. Taking
the interval of the P2 component (205–235 ms) of our example data set, the difference pattern
of the two conditions (target stimulus minus nontarget stimulus) displays a typical pattern with
broad central focus, see right topography of Fig. 3. In contrast, the classifier resp. spatial filter
has an intricate and more complex structure that has also weights of substantial magnitude, e.g.,
in the occipital region which does not contribute to the P2 component itself, see left topography
of Fig. 5. Note, that the difference pattern in Fig. 5(right) corresponds to the LDA classifier
under the assumption that the class covariance matrices are spherical, i.e. Σ̂−1 ∼ I, with I being
the identity matrix.

Clearly this non-smoothness of the filter topography seen in Fig. 5(left) might evoke disbelief
in researchers that are used to look at patterns only. Therefore, we will give an illustrative
simulation to point out, that indeed the optimal filter typically requires a more intricate structure
and may have substantial weight on electrodes that do not provide good discriminability when
looking at Fig. 5(right). Note, that these channels can contribute to a reduction of noise in
the informative channels. To illustrate this argument, we use artificially generated data. Two
dimensional data was drawn from two Gaussian distributions simulated potentials recorded at
two scalp electrodes FCz and CPz. Both channels thus contribute to the discrimination of the
two classes, see Fig. 6 (a). Classification of this 2D data yields 15% error. Now we add one
source of disturbance, namely occipital alpha rhythm which is not related to the classification
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Figure 6: Understanding spatial filters. (a) Two dimensional Gaussian distributions were generated to simulate scalp
potentials at two electrodes with relative high signal-to-noise ratio. (b) A disturbing signal is generated: simulated
visual alpha at channel Oz, which is propagated to channels CPz and FCz. (c) This results in a substantially decreased
separability in the original two dimensional space. However when classifying 3D data that includes data from sensor Oz,
it becomes possible to subtract the noise for the informative channels CPz and FCz and classification becomes possible
with the same accuaracy as for ‘undisturbed data’ in (a).

task. Simulating volume conduction, we add simulated alpha activity with a factor of 0.4 to CPz
and with factor 0.2 to FCz, see Fig. 6 (b). Since this introduces noise to the classification task,
the error rises to 37% for classification on channels FCz and CPz on these disturbed signals, see
Fig. 6 (c). But when we add the third channel Oz to the feature vector, the original classification
accuracy can be re-established on the 3D data (to be accurate, it was 16% in our simulation).
Although channel Oz itself is not informative for the discrimination of the two classes, it is
required for good classification. This demonstrates why a classifier on the three dimensional
data will have nonzero weight on channel Oz, which is itself not discriminative.

4.3. Shrinkage for Improved Classification

The standard estimator for a covariance matrix is the empirical covariance (see Eq. (11)
below). This estimator is unbiased and has good properties under usual conditions. But for
high-dimensional data with only a few data points given, the estimation may become imprecise,
because the number of unknown parameters that have to be estimated is quadratic in the number
of dimensions.

This leads to a systematic error: Large eigenvalues of the original covariance matrix are
estimated too large, and small eigenvalues are estimated too small; see Fig. 7. This error in
the estimation degrades classification performance (and renders LDA far from being optimal).
Shrinkage is a common remedy for compensating the systematic bias ([63]) of the estimated
covariance matrices (e.g., [23]):

Let x1, . . . , xn ∈ Rd be n feature vectors and let

(11) µ̂µµ =
1
n

n∑
i=1

xi and Σ̂ =
1

n − 1

n∑
i=1

(xi − µ̂µµ)(xi − µ̂µµ)>

be the unbiased estimator of the mean and the covariance matrix (empirical covariance matrix).
In order to counterbalance the estimation error, Σ̂ is replaced by

(12) Σ̃(γ) := (1 − γ)Σ̂ + γνI
12
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Figure 7: Left: Eigenvalue spectrum of a given covariance matrix (bold line) and eigenvalue spectra of covariance
matrices estimated from a finite number of samples drawn (N= 50, 100, 200, 500) from a corresponding Gaussian
distribution. Middle: Data points drawn from a Gaussian distribution (gray dots; d = 200 dimensions, two dimensions
selected for visualization) with true covariance matrix indicated by an orange colored ellipsoid, and estimated covariance
matrix in cyan. Right: An approximation of the true covariance matrix can be obtained as a linear interpolation between
the empirical covariance matrix and a sphere of approriate size.

for a tuning parameter γ ∈ [0, 1] and ν defined as average eigenvalue trace(Σ̂)/d of Σ̂ with
d being the dimensionality of the feature space. Then the following holds. Since Σ̂ is positive
semi-definite we have an eigenvalue decomposition Σ̂ = VDV> with orthonormal V and diagonal
D. Due to the orthogonality of V we get

Σ̃ = (1 − γ)VDV> + γνI = (1 − γ)VDV> + γνVIV> = V ((1 − γ)D + γνI) V>

as eigenvalue decomposition of Σ̃. That means

• Σ̃ and Σ̂ have the same eigenvectors (columns of V)

• extreme eigenvalues (large or small) are modified (shrunk or elongated) towards the aver-
age ν.

• γ = 0 yields unregularized LDA, γ = 1 assumes spherical covariance matrices.

Using LDA with such modified covariance matrix is termed covariance-regularized LDA, regu-
larized LDA or LDA with shrinkage.

For the trade-off with respect to the shrinkage parameter, recently an analytic method to
calculate the optimal shrinkage parameter for certain directions of shrinkage was found ([36];
see also [70] for the first application in BCI). This approach aims at minimizing the Frobenius
norm between the shrunk covariance matrix and the unknown true covariance matrix Σ. In effect,
large sample-to-sample variance of entries in the empirical covariance are penalized, i.e., lead to
stronger shrinkage. When we denote by (xk)i resp. (µ̂µµ)i the i-th element of the vector xk resp. µ̂µµ
and denote by si j the element in the i-th row and j-th column of Σ̂ and define

zi j(k) = ((xk)i − (µ̂µµ)i) ((xk) j − (µ̂µµ) j),

then the optimal parameter for shrinkage towards identity (as defined by (12)) can be calculated
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as ([58])

(13) γ? =
n

(n − 1)2

∑d
i, j=1 vark(zi j(k))∑

i, j s2
i j +
∑

i(sii − ν)2
.

The usage of the eq. (13) for the selection of the shrinkage parameter does not neccessarily
lead to better classification results, compared to a selection based on, e.g., cross-validation, but
is easier to implement and computationally much cheaper. Using regularized LDA for retraining
the classifier after each trial during online operation as in [69] would hardly be possible without
the analytical solution.

With respect to classification of ERP features, we know from Fig. 5 that the shrinkage param-
eter γ controls the weight vector of the corresponding classifier between the two extreme poles
of spatial pattern (difference between ERPs) for γ = 1 and a spatial filter that incorporates the
spatial structure of the noise for γ = 0. The latter case is optimal, if the covariance of the noise is
known. The empirical estimates that can be calculated from training data are error prone, in par-
ticular for high-dimensional feature spaces. In this case, the automatic selection of the shrinkage
parameter provides a good trade-off of using the spatial structure of the noise without overfitting
to the particular statistics found in the training set.

The method of regularized LDA with shrinkage parameter selected by the analytical solution
of [58] is called shrinkage LDA.

5. Classification of ERP Components

We start by exploring ERP classification separately in the temporal and in the spatial domain.
The purpose of classification on temporal features is to determine which channels contribute
most to the discrimination task. And classifcation on spatial features demonstrates which time
intervals are most important. Taken together, this investigation provides a good idea of which
components of the EEG is exploited by the classifier, and gives a better understanding of the data
and the classification process. For the actual classification task, the full information of spatio-
temporal features should be exploited, as demonstrated in Section 5.3.

5.1. Classification in the Temporal Domain

ERPs exhibit a particular time course at electrodes over its generators. The temporal features
calculated from single channels have been introduced in Section 2.1.

This single channel data does (in most cases) not contain sufficient information for a com-
petitive classification. Nevertheless, we can gain useful information in the following way. For
each single channel the classification accuracy that can be obtained from temporal features with
ordinary LDA is determined (e.g. by cross validation, cf. [38]). The resulting accuracy values
can be visualized as scalp topography and provide thus a survey of the spatial distribution of
discriminative information, see Fig. 8 (a). In this case, we can see that relevant information orig-
inates from central locations (P3), but even much better discriminability is provided by occipital
regions (vN2 component). The fact that classification in the matrix speller is mainly based on
visual evoked potentials rather than the P3 was only recently reported [68, 3]. The separability
map found here is completely in line with neurophysiological plausibility, but in other paradigms
it might indicate the need for further preprocessing of the signals.
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Figure 8: Temporal and Spatial Classification. (a) The classification error of temporal features extracted from the time
interval 115–535 ms was determined for each single channel. The obtained values are visualized here as scalp topography
by spatially interpolating the values assigned to each channel position and displaying the result as color coded map.
(b) The classification error of spatial features was determined for each time interval of 30 ms duration, shifted from 0 to
1000 ms. (c) Classifier as spatial filter: A linear classifier was trained on spatial features extracted from the time interval
220–250 ms (shaded in subplot (b)) of the running example data set. The resulting weight vector can be visualized as a
topography and can regarded as a spatial filter.

5.2. Classification in the Spatial Domain

ERPs exhibit a particular spatial distribution during the peak times of their subcomponents.
Spatial features calculated from single time points (or potential values obtained by averaging
within a given time interval) have been introduced in Section 2.1. Depending on the experimen-
tal setting, classification of such spatial feature may already yield powerful classification, given
an appropriate selection of the time interval. But there is often a complex of several ERP com-
ponents that contribute to the classification. In that case, spatio-temporal features can enhance
the result, see Section 5.3.

For spatial features, a classifier with ‘maximum’ shrinkage (γ = 1) uses the pattern of the
difference of the two classes as projection vector, see also Fig. 5. This corresponds to a rather
smooth topography, and might therefore seem neurophysiologically more plausibe. The more
intricate spatial filters we get with little shrinkage account for the spatial structure of the noise
and hold therefore the potential of more accurate classification, see Fig. 9 and the discussion
in Section 4.2. In this sense, the shrinkage parameter reflects our belief in the estimation of the
noise. If the noise (covariance matrix) can be estimated very well, it should be taken into account
for classification without restriction (γ = 0, i.e., ordinary LDA). But if the spatial structure of
the noise cannot be reliably estimated from the training data one should disbelief it and shrink
towards the no-noise assumption (γ = 1) in order to avoid overfitting. The procedure for the
selection of the shrinkage parameter γ provides a trade-off, that was found to work well for
classification of ERP components.

Fig. 11 (left part) shows the classification results of spatial features extracted at different time
intervals for the example data set using ordinary LDA (the right panel of that figure is explained
in the next section).

5.3. Classification in the Spatio-Temporal Domain

A good way to get an overview of where the discriminative information lies in the spatio-
temporal plane is to visualize a matrix of separability measures to the spatio-temporal features
of the experimental conditions. More specifically, this matrix is obtained by calculating a sep-
arability index separately for each pair of channel and time point. In this paper, we will use
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Figure 9: Results for different values of shrinkage parameter γ. Classification accuracy of spatial features (time interval
205–235 ms) was evaluated for different values of shrinkage parameter γ. The normal vector of the classifier’s separating
hyperplane w can be regarded as a spatial filter (see Section 3 and 4.2) and is visualized here for each value of γ as scalp
map (arbitrary unit). For γ = 1, the normal vector w is proportional to µ2 − µ1, while it is proportional to Σ̂−1(µµµ2 −µµµ1) in
the case without shrinkage (γ = 0). Note, that for illustration reasons, shrinkage was applied here to spatial features, i.e.,
data which is not so high-dimensional. Therefore, the gain obtained by shrinkage is not as huge as it often is for higher
dimensional data, see below the result for spatio-temporal features.
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Figure 10: Visualization of signed r2-matrix. For the spatio-temporal features, signed r2-values of targets minus nontarget
single trial ERPs were calculated and displayed as a color coded matrix. A heuristic was used to determine the indicated
time intervals, which accumulate high r2 values and each time interval has a fairly constant spatial pattern of r2-values.
The time-averaged r2-values for each of those intervals are also visualized as scalp topography. Note, that the matrix
visualization also shows propagation of components. The visual N1 component with peak around 175 ms at electrodes
PO7 and PO8 seems to originate from frontal areas around 115 ms (light blue band going from top (= frontal areas)
diagonally down to the bottom (= occipital areas)). The central P2 component peaking around 220 ms is initially more
focussed to the central area and propagates from there to frontal and occipital sites.

signed-r2-values: The pointwise biserial correlation coefficient (r-value) is defined as

(14) r(x) :=
√

N1 · N2

N1 + N2

mean{xi | yi = 1} −mean{xi | yi = 2}
std{xi}

,

and the signed-r2-values are sgn-r2(x) := sign(x) · r(x)2. Alternatively, other measures of separa-
bility of distributions can be used, such as Fisher score ([21, 45]), Student’s t-statistic ([65, 45])
area under the ROC curve ([24]) or rank-biserial correlation coefficient ([15]). The latter two
measures have the advantage that they do not rely on the assumption that the class distributions
are Gaussian. On the other hand, since LDA assumes Gaussian distributions, it seems appropriate
to make the same assumption in feature selection.

The analysis result for our example data set is shown in Fig. 10. Based on the displayed
matrix of separability indices (here, r2 values), it is possible to determine a set of time intervals
({T1, . . . ,Tn} in our notions of Section 2.1) that are good candidates for classification. Since
within each interval the average across time is calculated, see Eq. (2), the intervals should be
chosen such that within each interval the spatial pattern is fairly constant. Due to the high di-
mensionality of spatio-temporal features it is important to use the shrinkage technique presented
in Section 4.3 for classification.

Fig. 11 (right part) shows the classification results for spatio-temporal features. While ordi-
nary LDA suffered from overfitting and obtained a result of 25% error, which is worse than most
single interval results, shrinkage greatly reduced the error to only 4%. While the results of ordi-
nary LDA was disappointing in this particular example data set, we would like to point out, that
LDA is in many cases a powerful and robust classification method. In the example used here,
the number of training samples was low (750) compared to the dimensionality of the features
(7 × 55 = 385), since this requires the estimation of 385 × 384/2 = 73, 920 parameters in the
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Figure 11: Classification error: (left) using spatial features extracted from different time intervals; (right) using spatio-
temporal features obtained from all eight time intervals. While LDA (red circle) obtains a result that is worse than most
single interval results due to overfitting, shrinkage (magenta colored circle) greatly reduces the error to about 4%. The
intervals correspond to the shaded areas in Fig. 2. Bottom row: Scalp maps show the spatial distribution of the ERP
components in the corresponding time intervals.

covariance matrix. Additionally, to the bias in the estimation of the covariance matrix, there is
also a numerical problem in the inversion of a badly conditioned matrix. There are ways to cope
with these numerical issues, e.g., involving singular value decomposition, but since that is also
kind of regularization, we did not use such a method for comparison here.

Finally, we would like to point out that the weight vector of a linear classifier trained on
spatio-temporal features can be visualized similar as for spatial features, see Fig. 8 (c), but as
a sequence for scalp maps that represent the resulting spatial filters for each of the chosen time
intervals Ti.

6. Empirical Evaluation

Finally, we demonstrate the effect of shrinkage on ERP detection performance and present
classification results, validated on data of all 13 participants for both types of speller paradigms,
Hex-o-Spell and the Matrix Speller, see Section 2.

In this context, we restrict the analysis to the binary classification problem target vs. non-
target and provide validation results for a varying number of training samples, which nicely
demonstrates the effect of degrading performance in cases of small samples-to-feature ratios and
its remedy by shrinkage.

We compare shrinkage LDA with ordinary LDA and also with stepwise LDA (SWLDA,
[20]), because the latter is the state-of-the-art algorithm for the Matrix Speller resp. ERP classi-
fication in some BCI groups (e.g., [31, 32, 22]). In [32] different classification algorithms have
been compared with the conclusion that SWLDA has the greatest potential for the usage in the
Matrix Speller. The SWLDA classifier was extended in [28] into an ensemble framework with
some improvement in performance, evaluated for the case of sufficient training data.

This SWLDA classifier is basically another regularized version of LDA, performing dimen-
sionality reduction by restricting the number of used features (variables). Model estimation for
SWLDA is done in a greedy manner by iteratively inserting and removing features from the

18



model based on statistical tests until the maximal number of active variables is reached. The
method has three free parameters to choose: two p-values guiding insertion and removal of vari-
ables, and the maximal number of variables. We here use pins = 0.1 and prem = 0.15, and a
maximum of 60 predictors, as recommended in [32].

6.1. Data preprocessing and feature selection

The continuous EEG recordings of each of the 13 participants were epoched and aligned to
the onsets of intensification. A baseline correction was done based on the average EEG activity
within 170ms directly preceding the stimulus. Epochs were split into a training and a test set as
described below. The training data were used to heuristically determine a set of seven subect-
specific discriminative time intervals (see Section 5.1), which were constrained to lie between
50ms and 650ms poststimulus (covering all components of potential interest, like P1, N1, P2, N3,
P3, N3, see Fig. 2). For each trial, spatio-temporal features (cf. Section 2.1) have been calculated
in the following way. The mean activity in the selected intervals for 55 scalp electrodes gave rise
to 55× 7 matrices X(1), . . . ,X(n), that were stacked into feature vectors x(1), . . . , x(n) of dimension
p = 385.

6.2. Performance evaluation setting

To analyze the performance of the classifiers in difficult settings of small samples-to-feature
ratios, we used a varying number of training samples (n) between 50 and 650. Splitting the data
into training and test set was done in a chronological fashion, taking the first part as training data
and the second part as test data. Note, that the maximum number of samples corresponds to 6
symbol selection steps with 10 intensifications. The parameters of the linear classifiers are esti-
mated from the training set, and applied on the test samples. The classifiers are optimized to pro-
vide good separation between target epochs (participant focuses on intensified row/column/disc)
and non-target epochs (participant focuses on different item). The validation error is calculated
on all left-out trials. This procedure was performed for all 13 participants separately and the
error rates were averaged.

6.3. Results

Fig. 12 depicts the results in the described validation setting. In cases with p >> n, Shrinkage-
LDA clearly outperforms the other methods. For p < n the performance of SWLDA converges
towards Shrinkage-LDA, while ordinary LDA needs considerably more training samples for sta-
ble operation. The peaking behaviour of the LDA performance near the ratio n/p = 1 looks
strange, but is well known in the machine learning literature, see [56, 59]. It is due to a number
of eigenvalues being very small but nonzero, which leads unfavorable numerical effects in the
inversion of the empirical covariance matrix using the pseudo-inverse, see [29].

7. Conclusion

When analyzing BCI data, we typically examine the spatial patterns and filters that allow to
classify a certain brain state. In this tutorial, we identified an intuitive relation between patterns
and filters in the context of regularized LDA. Furthermore, we gave two arguments for the dif-
ferent nature of filters in contrast to patterns, which should provide a better understanding and
interpretation of spatial filters.
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Figure 12: Classification results on spatio-temporal features for a variable number of training samples. Three different
variants of linear discriminant classifiers have been trained on spatio-temporal features of p = 385 dimensions. The
number of training samples was varied from n = 50 to 650. The strange peaking behaviour of the LDA performance near
n = p is discussed in the main text. Left: Results for the Matrix Speller. Right: Results for Hex-o-Spell.

Mathematically, a key ingredient of the proposed algorithm was an accurate covariance ma-
trix estimate, which is particularly hard in high dimensions. The use of a higher number of
channels is potentially advantageous for ERP classification, but this improvement can only be
turned to practice if the employed classification algorithm uses a proper regularization technique
that allows to handle high dimensional features albeit a small number of training samples. While
this insight is well-known in statistics, the practical use of shrinkage for ERP decoding is novel
and yields substantial improvements in predictive accuracy.

Future work will explore shrinkage estimation also for combinations of imaging features (see
e.g. [18]) and for correlative measurements between different image modalities such as local
field potentials (LFP) and fMRI ([4]). Furthermore we will consider nonlinear variants, where
shrinkage could be performed in a kernel feature space ([61, 60, 46]).
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