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Abstract

Brain-Computer Interfaces can suffer from a large variasfade subject condi-
tions within and across sessions. For example vigilancéuitions in the indi-
vidual, variable task involvement, workload etc. alter tiaracteristics of EEG
signals and thus challenge a stable BCI operation. In th&eptevork we aim to
define features based on a variant of the common spatialpa€SP) algorithm
that are constructeiivariant with respect to such nonstationarities. We enforce
invariance properties by adding terms to the denominatarRdyleigh coefficient
representation of CSP such as disturbance covariancecemfrom fluctuations
in visual processing. In this manner physiological priooktedge can be used
to shape the classification engine for BCI. As a proof of cphege present a
BCI classifier that is robust to changes in the level of patigtactivity. In other
words, the EEG decoding still works when there are lapsegitance.

1 Introduction

Brain-Computer Interfaces (BCIs) translate the intent sfibject measured from brain signals di-
rectly into control commands, e.g. for a computer applicatr a neuroprosthesis ([1, 2, 3, 4, 5, 6]).
The classical approach to brain-computer interfacingpisrant conditionind[2, 7]) where a fixed
translation algorithm is used to generate a feedback sfgmal the electroencephalogram (EEG).
Users are not equipped with a mental strategy they shouldratfeer they are instructed to watch
a feedback signal and using the feedback to find out ways tontenlily control it. Successful BCI
operation is reinforced by a reward stimulus. In such BCtesys the user adaption is crucial and
typically requires extensive training. Recentiychine learning techniquegere applied to the BCI
field and allowed to decode the subject’s brain signals,ipgthe learning task on the machine side,
i.e. a general translation algorithm is trained to infer $pecific characteristics of the user’s brain
signals|[8, 9, 10, 11, 12, 13, 14]. This is done by a statiktinalysis of a calibration measurement
in which the subject performs well-defined mental acts likagined movements. Here, in principle
no adaption of the user is required, but it is to be expectatl ukers will adapt their behaviour
during feedback operation. The idea of the machine learapgroach is that a flexible adaption
of the system relieves a good amount of the learning load fr@rsubject. Most BCI systems are
somewhere between those extremes.



Although the proof-of-concept of machine learning based 8Gtem$ was given some years ago,
several major challenges are still to be faced. One of theim isake the systenmvariantto non
task-related fluctuations of the measured signals duriedifack. These fluctuations may be caused
by changes in the subject’s brain processes, e.g. changsslofirtvolvement, fatigue etc., or by
artifacts such as swallowing, blinking or yawning. The loadtion measurement that is used for
training in machine learning techniques is recorded duti?&g0 min, i.e. a relatively short period
of time and typically in a monotone atmosphere, so this dates thot contain all possible kinds of
variations to be expected during on-line operation.

The present contribution focusses on invariant featureaetibn for BCI. In particular we aim to
enhance the invariance properties of the common spati@rpat(CSP, [15]) algorithm. CSP is the
solution of a generalized eigenvalue problem and has asassttbng link to the maximization of a
Rayleigh coefficient, similar to Fisher’s discriminant gysés. Prior work by Mika et al| [16] in the
context of kernel Fisher’s discriminant analysis contaireskey idea that we will follow: noise and
distracting signal aspects with respect to which we want aerour feature extractor invariant is
added to the denominator of a Rayleigh coefficient. In othemds, our prior knowledge about the
noise type helps to re-design the optimization of CSP featutraction. We demonstrate how our
invariant CSP (iCSP) technique can be used to make a BClmsystariant to changes in the power
of the parietala-rhythm (see Section 2) reflecting, e.g. changes in vigdandigilance changes
are among the most pressing challenges when robustifyinglasigstem for long-term real-world
applications.

In principle we could also use an adaptive BCI, however, tatem typically has a limited time
scale which might not allow to follow fluctuations quicklyargh. Furthermore online adaptive BCI
systems have so far only been operated with 4-9 channels.dtMel ke to stress that adaptation and
invariant classification are no mutually exclusive altéikres but rather complementary approaches
when striving for the same goal: a BCI system that is invdriarundesired distortions and non-
stationarities.

2 Neurophysiology and Experimental Paradigms

Neurophysiological background. Macroscopic brain activity during resting wakefulnesstears
distinct ‘idle’ rhythms located over various brain areag. ¢he parietabr-rhythm (7-13 Hz) can
be measured over the visual cortex [17] and thehythm can be measured over the pericentral
sensorimotor cortices in the scalp EEG, usually with a fesmy of about 8-14 Hz|([18]). The
strength of the parietatr-rhythm reflects visual processing load as well as atteraioc fatigue
resp. vigilance.

The moment-to-moment amplitude fluctuations of these Ideghms reflect variable functional
states of the underlying neuronal cortical networks andbsansed for brain-computer interfacing.
Specifically, the pericentral- and rythms are diminished, or even almost completely blockgd, b
movements of the somatotopically corresponding body padgpendent of their active, passive or
reflexive origin. Blocking effects are visible bilateraltlwith a clear predominance contralateral to
the moved limb. This attenuation of brain rhythms is termeshérelated desynchronization (ERD)
and the dual effect of enhanced brain rhythms is called esdated synchronization (ERS) (see
[19)]).

Since a focal ERD can be observed over the motor and/or secsidex even when a subject is only
imagining a movement or sensation in the specific limb, #dgdre can be used for BCI control: The
discrimination of the imagination of movements of left harsd right hand vs. foot can be based on
the somatotopic arrangement of the attenuation oftleed/or3 rhythms. However the challenge
is that due to the volume conduction EEG signal recordedeas¢hlp is a mixture of many cortical
activities that have different spatial localizations; fatample, at the electrodes over the mortor
cortex, the signal not only contains tperhythm that we are interested in but also the projection of
parietala-rhythm that has little to do with the motor-imagination. this end spatial filteringis an
indispensable technique; that is to take a linear comhinaif signals recorded over EEG channels
and extract only the component that we are interested in. attiqular the CSP algorithm that
optimizes spatial filters with respect to discriminabiligya good candidate for feature extraction.

Experimental Setup. In this paper we evaluate the proposed algorithm on offdia& in which
the nonstationarity is induced by having two different lgrckind conditions for the same primary

INote: In our exposition we focus on EEG-based BCI systems that diesly on evoked potentials (for
an extensive overview of BCI systems including invasive and systasedbon evoked potentials see [1]).



o5 Figure 1: Topographies of—values (multiplied by
the sign of the difference) quantifying the difference
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task. The ultimate challenge will be on-line feedback witloisg fluctuations of task demands etc,
a project envisioned for the near future.

We investigate EEG recordings from 4 subjects (all from wheenhave an ‘invariance measure-
ment’, see below). Brain activity was recorded from the gegth multi-channel amplifiers using
55 EEG channels.

In the ‘calibration measurement’ all 4.5-6 seconds one dff8rént visual stimuli indicated for 3
seconds which mental task the subject should accomplishgltirat period. The investigated men-
tal tasks were imagined movements of the left hand, the hightl, and the right foot. There were
two types of visual stimulation: (imag_let) targets were indicated by letters (L, R, F) appearing at
a central fixation cross and (Enag_movga randomly moving small rhomboid with either its left,
right or bottom corner filled to indicate left or right handfoot movement, respectively. Since the
movement of the object was independent from the indicategts, target-uncorrelated eye move-
ments are induced. Due to the different demands in visualgssing, the background brain activity
can be expected to differ substancially in those two typeseobrdings. The topography of the
r’—values (bi-serial correlation coefficient of feature eswvith labels) of the log band-power dif-
ference betweeimag_moveandimag_lettis shown in the left plot of Fig.12. It shows a pronounced
differene in parietal areas.

A sham_feedbacgaradigm was designed in order to charaterize invarianopepties needed for
stable real-world BCI applications. In this measuremeatdhbjects received a fake feedback se-
guence which was preprogrammed. The aim of this recordirgyteaollect data during a large
variety of mental states and actions that ao¢ correlated with the BCI control states (motor im-
agery of hands and feet). Subjects were told that they canttal the feedback in some way that
they should find out, e.g. with eye movements or muscle &gtifihey were instructed not to per-
form movements of hands, arms, legs and feet. The type ob&sdwas a standard 1D cursor
control. In each trial the cursor starts in the middle anduthbe moved to either the left or right
side as indicated by a target cue. When the cursor toucheeftho tight border, a response (correct
or false) was shown. Furthermore the number of hits and sisss shown. The preprogrammed
‘feedback’ signal was constructed such that it was randatmeifbeginning and then alternating peri-
ods of increasingly more hits and periods with chance legglppmance. This was done to motivate
the subjects to try a variety of different actions and to reldifferent states of mood (satisfaction
during ‘successful’ periods and anger resp. disfavor duffailure’). The right plot of Figl 2 visual-
izes the difference in log band-power betwéerag_moveandsham_feedbackA decreased alpha
power in centro-parietal areas durisgam_feedbackan be observed. Note that this recording in-
cludes much more variations of background mental actitiantthe difference betweé@mag_move
andimag_lett

3 Methods

Common Spatial Patterns (CSP) Analysis. The CSP technique ([15]) allows to determine spatial
filters that maximize the variance of signals of one conditmd at the same time minimize the
variance of signals of another condition. Since variandeofl-pass filtered signals is equal to band-
power, CSP filters are well suited to discriminate mentakst¢éhat are characterized by ERD/ERS
effects ([20]). As such it has been well used in BCI syste®isl(#t]) where CSP filters are calculated
individually for each subject on the data of a calibratioresigement.

Technically the Common Spatial Pattern (CSP) [21] algaritfives spatial filters based on a dis-
criminative criterion. LeX; andX; be the (timex channel) data matrices of the band-pass filtered



EEG signals (concatenated trials) under the two condi{ierms, right-hand or left-hand imagination,
respectivel§) andZ; andZ, be the corresponding estimates of the covariance mafices' X;.
We define the two matrice; and<: as follows:

S =M _5@ : discriminative activity matrix
S= sV 4502 : common activity matrix

The CSP spatial filtev € R® (C is the number of channels) can be obtained by extremizing the
Rayleigh coefficient:

. viSyv
{max min}, e ViSy' @
This can be done by solving a generalized eigenvalue problem
SIV=ASV. (2

The eigenvalué is bounded between1 and 1; a large positive eigenvalue corresponds to a pro-
jection of the signal given by that has large power in the first condition but small in theoselc
condition; the converse is true for a large negative eigesvarhe largest and the smallest eigen-
values correspond to the maximum and the minimum of the Reyleefficient problem (Eq. (1)).
Note thatv' Syv = v Z,v— v  3ov is the average power difference in two conditions that wetwan
to maximize. On the other hand, the projection of the agtithiit is common to two classes v
should be minimized because it doesn’t contribute to therisnability. Using the same idea from
[16] we can rewrite the Rayleigh problem (Eq. (1)) as follows

min v/ v, st. VIZiv—viSov=A,

vERC
which can be interpreted as finding the minimum nermith the condition that the average power
difference between two conditions to he The norm is defined by the common activity mat8ix
In the next section, we extend the notion&fto incorporate any disturbances that is common to
two classes that we can measure a priori.
In this paper we calfilter the generalized eigenvectas(j = 1,...,C) of the generalized eigenvalue
problem (Eq.[(2)) or a similar problem discussed in the nextien. Moreover we denote b the
matrix we obtain by putting th€ generalized eigenvectors into columns, namély {v; }J-C:l €
RE*C and callpatternsthe row vectors of the inverse =V -1, Note that a filtev; € R® has its
corresponding patteray € RC; a filterv; extracts only the activity spanned byand cancels out all
other activities spanned lay (i # j); therefore a pattera; tells what the filtew; is extracting out
(see Figl 2).
For classification the features of single-trials are caltad as the log-variance in CSP projected
signals. Here only a few (2 to 6) patterns are used. The gateat patterns is typically based on
eigenvalues. But when a large amount of calibration dataisamailable it is advisable to use a
more refined technique to select the patterns or to manuatlgse them by visual inspection. The
variance features are approximately chi-square dist&rthufaking the logarithm makes them similar
to gaussian distributions, so a linear classifier (e.gedirdiscriminant analysis) is fine.
For the evaluation in this paper we used the CSPs correspgitide the two largest and the two
smallest eigenvalues and used linear disciminant analgsislassification. The CSP algorithm,
several extentions as well as practical issues are reviewesetail in [15].

Invariant CSP. The CSP spatial filters extracted as above are optimizedhécalibration mea-
surement. However, in online operation of the BCI systerfed#ht non task-related modulations
of brain signals may occur which are not suppressed by thefll®R. The reason may be that
these modulations have not been recorded in the calibrateasurement or that they have been so
infrequent that they are not consistently reflected in tlagistics (e.g. when they are not equally
distributed over the two conditions).

The proposed iCSP method minimizes the influence of modulatthat can be characterized in
advance by a covariance matrix. In this manner we can cod@pleysiological prior knowledge

2We use the term covariance for zero-delay second order statisticsametivannels and not for the statis-
tical variability. Since we assume the signal to be band-pass filtered, ¢haderder statistics reflects band
power.



or further information such as the tangent covariance mg2R]) into such a covariante matri.

In the following motivation we assume thatis the covariance matrix of a signal mathix Using
the notions from above, the objective is then to calcula&&iabfiltersvgl) such that va(rxlvﬁl)) is
maximized and ve(b(gvﬁl)) and va(Y\/jl)) are minimized. Dually spatial filtel\zgz) are determined
that maximize va(rxzvﬁz)) and minimize va(rX1v§2>) and va(Y\/jz)).

Pratically this can be accomplished by solving the follayviwo generalized eigenvalue problems:

v sv@ =p®  and VO (1-&)(5+5) + ESVD = 3)
V@ 5,v@ D@ and V@' (1-8)(51+35) +ESV@ = | (4)

where & € [0,1] is a hyperparameter to trade-off the discrimination of théntng classesX,
Xo ) against invariance (as characterized By Section 4 discusses the selection of parame-

ter &. Filters v§1> with high eigenvaluesj}l) provide not only high va(t)(lvgb) but also small
T

W (-8 + eV =1 (1-&)d", i.e. small vafxzvi”) andsmall varY V). The dual

is true for the selection of filters fronﬁz).

]
Note that foré = 0.5 there is a strong connection to the one-vs-rest strategd+ftass CSP ([23]).
Features for classification are calculated as log-variasogy the two filters from each aﬁl) and

v§2> corresponding to the largest eigenvalues. Note that the adeCSP is in the spirit of the
invariance constraints in (kernel) Fisher’s Discriminpraposed in [16].

A Theoretical Investigation of iCSP by Influence Analysis. As mentioned, iCSP is aiming at
robust spatial filtering against disturbances whose camag= can be anticipated from prior knowl-
edge. Influence analysis is a statistical tool with which w&e assess robustness of inference proce-
dures [24]. Basically, it evaluates the effect in inferepoacedures, if we add a small perturbation
of O(¢g), wheree <« 1. For example, influence functions for the component aealgsich as PCA
and CCA have been discussed so far [25, 26]. We applied thhineay to iCSP, in order to check
whether iCSP really reduces influence caused by the distoebat least in local sense. For this
purpose, we have the following lemma (its proof is includethie Appendix).

Lemma 1 (Influence of generalized eigenvalue problems) Aeand w, be k-th eigenvalue and
eigenvector of the generalized eigvenvalue problem

Aw= ABw, (5)

respectively. Suppose that the matrices A and B are perduniith small matricegA and P where
€ < 1. Then the eigenvaluag and eigenvectordy of the purterbed problem

(A+ AW = A (B+ eP)W (6)
can be expanded a% + £xx +0(€) and w, + €, + o(g), where
1
Xk = We(A—APW, W= —My(A—AP)wy— E(WkTPWk)Wm 7

My := B~Y/2(B~1/2AB~1/2 — \,1)*B~/2 and the suffix '+ denotes Moore-Penrose matrix inverse.

The generalized eigenvalue problem edns (3) ahd (4) carpbeased as
21V = d{(l— E)(Zl+22) —|—EE}V, 2oUu = C{(l— E)(Zl—i-Zz) —‘y—fE}U.

For simplicity, we consider here the simplest perturbatibthe covariances as; — 21 + €= and
>, — 21+ €=. In this case, the perturbation matrices in the lemma carxpeessed ad; = =,

Ny ==, P=2(1-&)=. Therefore, we get the expansions of the eigenvalues aedagtors as
dk + X1k, Ck + EX2k, Vic+ EYq anduy + Yy, Where
X = {1-2(1-&)ddw v, Xk = {1-2(1-&)adug Zug, (8)
Y = —{1-2(1-&)dMuEvic — (1 &) (Vg Zvi vk, ©)
Yoo = —{1-2(1—&)odMacuc— (1— &) (u] Zu)ug, (10)
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Figure 2: Comparison of CSP and iCSP on test data with artificially increzsgpital alpha. The upper plots
show the classifier output on the test data with different degrees of atped (factorer= 0, 0.5, 1, 2). The
lower panel shows the filter/pattern coefficients topographically mappedeoscalp from original CSP (left)
and iCSP (right). Here the invariance property was defined with regpéte increase in the alpha activity in
the visual cortex (occipital location) using an eyes open/eyes closertieg. See Section 3 for the definition
of filter and pattern.

My = 3 Y2(2 125,512 _ ) TZ Y2, My 1= T Y2(3- 25,512 _ gyl ) 2-1/2, andX :=
(1-&)(Z1+22) + &=. The implication of the result is the following. & =1— 2—},'( (resp. & =
1- z%k) is satisfied, the(&) term xik (resp. x2«) of the k-th eigenvalue vanishes and also #th

eigenvector does coincide with the one for the original wbup toe order, because the first term
of Yy (resp.y,) becomes zero (we note thdtandcy also depend 0§).

4 Evaluation

Test Case with Constructed Test Data. To validate the proposed iCSP, we first applied it to
specifically constructed test data. iCSP was traided 0.5) on motor imagery data with the invari-
ance characterized by data from a measurement during ‘@gs @pprox. 40 s) and ‘eyes closed’
(approx. 20s). The motor imagery test data was used in itgnadi form and variants that were
modified in a controlled manner: From another data set dueyes closed’ we extracted activity
related to increased occipital alpha activity (backpriiggcof 5 ICA components) and added this
with 3 different factors¢ = 0.5, 1, 2) to the test data.

The upper plots of Fig. 2 display the classifier output on thiestructed test data. While the per-
formance of the original CSP is more and more deteriorated increased alpha mixed in, the
proposed iCSP method maintains a stable performance indepeof the amount of increased al-
pha activity. The spatial filters that were extracted by C8&lyais vs. the proposed iCSP often
look quite similar. However, tiny but apparently importalifferences exist. In the lower panel of
Fig.[2 the filter ¢;) pattern &;) pairs from original CSP (left) and iCSP (right) are showhefilters
from two approaches resemble each other strongly. Howtheorrespondingatternsreveal an
important difference. While the pattern of the original C3B hositive weights at the right occipital
side which might be susceptible domodulations, the corresponding iCSP has not. A more ddtaile
inspection shows that both filters have a focus over the (ggrisori-) motor cortex, but only the
invariant filter has a spot of opposite sign right posteraoit.t This spot will filter out contributions
coming from occipital/parietal sites.

Model selection for ICSP. For each subject, a cross-validation was performed foewifft values

of & on the training data (sessiamag_movgand the resulting in minimum error was chosen.
For the same values d@f the iCSP filters + LDA classifier trained dmag_movewere applied to
calculate the test error on data framag_lett Fig.[3 shows the result of this procedure. The shape
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Figure 3: Modelselection and evaluatiobeft subplots:Selection of hyperparametérof the iCSP method.
For each subject, a cross-validation was performed for differelaiesaof £ on the training data (session
imag_movg see thin black line, and th& resulting in minimum error was chosen (red circle). For the same
values of¢ the iCSP filters + LDA classifier trained dmag_movewere applied to calculate the test error
on data fromimag_lett(thick colorful line). Right plot: Test error in all four recordings for classical CSP
and the proposed iCSP (with model paramétehosen by cross-validation on the training set as described in
Section 4).

of the cross-validation error on the training set and thede®r is very similar. Accordingly, the
selection of values for parametéris successful. For subjeet]§ = 0 was chosen, i.e. classical
CSP. The case for subjetit shows that the selection éfmay be a delicate issue. For larges values
of & cross-validation error and test error differ dramatically choice of £ > 0.5 would result

in bad performance of iCSP, while this effect could have resrbpredicted so severely from the
cross-validation of the training set.

Evaluation of Performance with Real BCl Data. For evaluation we used thimag_moveession
(see Sectionh 2) as training set and itinag_lettsession as test set. Fig 3 compares the classification
error obtained by classical CSP and by the proposed mett&feli@th model parametérchosen by
cross-validation on the training set as described abovainfan excellent improvement is visible.

5 Concluding discussion

EEG data from Brain-Computer Interface experiments arélighallenging to evaluate due to
noise, nonstationarity and diverse artifacts. Thus, B@Vjoles an excellent testbed for testing the
quality and applicability of robust machine learning mettidcf. the BCl Competitions [27, 28]).
Obviously BCI users are subject to variations in attentiod enotivation. These types of non-
stationarities can considerably deteriorate the BCI diasperformance. In present paper we pro-
posed a novel method to alleviate this problem.

A limitation of our method is that variations need to be cleteezed in advance (by estimating an
appropriate covariance matrix). At the same time this is alstrength of our method as neuro-
physiological prior knowledge about possible sources @f-st@tionarity is available and can thus
be taken into account in a controlled manner. Also the selectf hyperparametef needs more
investigation, cf. the case of subjeaitin Fig.[3. One strategy to pursue is to update the covariance
matrix = online with incoming test data. (Note that no label inforimatis needed.) Online learning
(learning algorithms for adaptation within a BCI sessionld also be used to further stabilize the
system against unforeseen changes. It remains to futuerarasto explore this interesting direction.

Appendix: Proof of Lemmal1.

By substituting the expansionszqt andWy to Eq.(8) and taking th®(g) term, we get
APy + Bwie = ABy + AP+ Xi B (11)
Eq.{7) can be obtained by multiplying] to Eq.(11) and applying Eq.(5). Then, from Eq.(11),
(A=AB)Yy = —(B—AP)Wic+ XkBwk = —(A—AB)M(A — AcP)w,



holds, where we used the constraingBwk = Jjk and
(A— AB)My = ;Bij} =1 — Bww, . (12)
i

Eq.(12) can be proven by B Y2AB Y2 A = 3 j4AiBY 2w w] BY/2 and
(B~Y2AB Y2 Ad) " = 5.4 1/A;BY?wjw/ BY2. Since spafw} is the kernel of the operatdk— AB,

Yy can be explained ag, = —My(A — AcP)wi + cwi. By a multiplication WitthB, the constant turns
out to bec = —w Pw /2, where we used the faa{) BMy = 0" andw, By, = —w, Pw/2 derived from the

normalizationw, (B eP)Wy = 1. 0
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