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Abstract— The Berlin Brain-Computer Interface (BBCI)
project develops a non-invasive BCI system whose key features
are (1) the use of well-established motor competences as control
paradigms, (2) high-dimensional features from 128-channel EEG
and (3) advanced machine learning techniques. As reported
earlier, our experiments demonstrate that very high information
transfer rates can be achieved using the readiness potential (RP)
when predicting the laterality of upcoming left vs. right hand
movements in healthy subjects. A more recent study showed
that the RP similarily accompanies phantom movements in arm
amputees, but the signal strength decreases with longer loss of the
limb. In a complementary approach oscillatory features are used
to discriminate imagined movements (left hand vs. right hand
vs. foot). In a recent feedback study with 6 healthy subjects
with no or very little experience with BCI control, 3 subjects
achieved an information transfer rate above 35 bits per minute
(bpm), and further two subjects above 24 and 15 bpm, while
one subject could not achieve any BCI control. These results are
encouraging for an EEG-based BCI system in untrained subjects
that is independent of peripheral nervous system activity and does
not rely on evoked potentials even when compared to results with
very well-trained subjects operating other BCI systems.

Index Terms— Brain-Computer Interface, Classification, Com-
mon Spatial Patterns, EEG, ERD, Event-Related Desynchro-
nization, Information Transfer Rate, Readiness Potential, RP,
Machine Learning, Single-Trial Analysis

I. I NTRODUCTION

The aim of Brain-Computer Interface (BCI) research is to
establish a new augmented communication system that trans-
lates human intentions—reflected by suitable brain signals—
into a control signal for an output device such as a com-
puter application or a neuroprosthesis [1]. According to the
definition put forth at the first international meeting for BCI
technology in 1999, a BCI “must not depend on the brain’s
normal output pathways of peripheral nerves and muscles”
[2]. This viewpoint is certainly for research purpose in order
to have clear evidence of what information a systems uses and
where it comes from. Nevertheless there seems to be consensus
in the BCI community that in specific BCI applications (e.g.,
for paralyzed patients) it may be reasonable to get all signals
that provide useful information regardless of their origin.
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There is a huge variety of BCI systems, see [1], [3], [4] for a
broad overview. Our Berlin Brain-Computer Interface (BBCI)
is a non-invasive, EEG-based system, which does not use
evoked potentials. BCI systems relying on evoked potentials
can typically achieve higher information transfer rates (ITRs)
in contrast to systems working on unstimulated brain signals,
cf. [5]. On the other hand with evoked potential BCIs the
user is constantly confronted with stimuli, which can become
exhaustive after longer usage.

Here we present two aspects of the main approach taken in
the BBCI project. The first is based on the discriminability
of premovement potentials in self-paced movements. Our
initial studies ([6]) show that high information transfer rates
can be obtained from single-trial classification of fast-paced
motor commands. Additional investigations point out ways
of improving bit rates further, e.g., by extending the class of
detectable movement related brain signals to the ones encoun-
tered when moving single fingers within one hand. A more
recent study showed that it is indeed possible to transfer the
results obtained with regard to movement intentions in healthy
subjects to phantom movements in patients with traumatic
amputations.

Taking another approach, we established a BCI system
based on motor imagery that works without subject training.
Using general, complex features derived from 128-channel
EEG recordings the system automatically adapts to the specific
brain signals of each user by using advanced techniques of
machine learning and signal processing [7], [8], [9]. This
approach contrasts with the operant conditioning variant of
BCI, in which the subject has to learn to control a specific EEG
feature which is hard-wired in the BCI system. According to
the motto ’let the machines learn’ our approach minimizes
the need for subject training and copes with one of the major
challenges in BCI research: the huge inter-subject variability
with respect to patterns and characteristics of brain signals.

II. A PPROACH1: SELF-PACED AND PHANTOM FINGER

MOVEMENTS

A. Exploiting the limits of the refractory behavior in fast-
paced motor commands

The main goal of BCI is to improve autonomy of people
with severe motor disabilities by new communication and
control options. These persons cannot move but can think
about moving their limbs and produce in this way stable
motor-related signals like the readiness potential (RP, or
Bereitschaftspotential, BP) and event-related desyncroniza-
tion (ERD). The RP is a transient postsynaptic response
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of main pyramidal peri-central neurons, see [10]. It leads
to a negativation of the EEG over primary motor cortices
during motor preparation that peaks about movement onset. In
hand movements it is focused contralateral to the performing
hand, cf. [11], [12] and references therein for an overview.
The preparation of movements is reflected also by an ERD,
i.e., an attenuation of pericentralµ- and β -rhythms in the
corresponding motor areas. With respect to unilateral hand
movements these blocking effects are visible bilateral but with
a clear predominance contalateral to the performing hand,
cf. [13]. In controls, imagined movements produce motor
related signals ([14]), but less pronounced in comparison to
executed movements probably owing to duality of the task
of imagining a movement but at the same time vetoing the
actual movement. Therefore a real movement made by a
healthy subject is more like the motor-command in disabled
persons than an imagined movement. Our main interest in
the following experiment was the examination ofstability
and refractory behavior of motor related brain signalswith
increasing speed of execution and the associated bit-rate.

For this reason we examined the cortical signals of exe-
cuted finger movements in experimental settings with different
movement speeds. We started a series of experiments with
healthy volunteers performing self-paced finger-movements on
a computer keyboard with approximate tap-rates of 30, 60
and 120 keystrokes per minute (kpm). EEG was recorded
from 64 Ag/AgCl scalp electrodes. Electromyogram (EMG)
was obtained fromM. flexor digitorum communisfrom both
sides to detect EMG onset. EEG was segmented, averaged and
baseline-corrected in the case of RP. In case of ERD/ERS we
first determined the individual power-peaks in theµ frequency
range from power spectral density plots and chose subject-
specific band-pass filters accordingly. The lower limit was
in every case between 7 and 9 Hz and upper bound was
13 or 14 Hz. After band-pass filtering, signals were Laplace-
transformed, rectified, segmented, class-wise averaged and
smoothed. Fig. 1 shows averaged data from the two subjects
(VP 1 and VP 2), RPs for the first and ERDs for the second.
One can see for RP from VP 1 predominantly contralateral
negativation before EMG-onset (which is 120 ms before key-
press) and regeneration after movement. In contrast to the
behavior of the RP a different kind of activation/deactivation
behavior could be seen in theµ-bandpass filtered data. Most
prominent in the preparatory phase of the movement is the
ipsilateral synchronization along with a slide contralateral
desynchronization. In the single-trial classification of the pre-
movement period (-1400 to -120 ms relative to keypress)
corresponding to the features shown in Fig. 1, the error
increased with faster tap rates, see Table I. Nevertheless the
highest information transfer rate was obtained at the highest
speed (0.5s) for the RP feature and at medium speed (1s)
for the ERD feature. This finding, indicating that the refrac-
tory period is shorter for RP, needs to be studied in more
subjects. This preliminary study indicates that different types
of features are available for the prospective identification of
movement intentions and that higher bit rates can be achieved
in tapping speeds of 60 kpm and faster. Further investigation
with more subjects will include ERD/ERS effects in theβ
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Fig. 1. Averaged data for RP (readiness potential) in VP 1 and ERD (event
related desynchronization) of theµ rhythm (8–14 Hz) in VP 2. The tap-rate
varies from 2s in the leftmost to 0.5s in the rightmost column. The black line
in all subplots shows the activation over ipsilateral cerebral cortex before/after
finger movement. The red line shows the activation over contralateral cerebral
cortex before/after finger movement.

TABLE I

ERROR RATES(FIRST ROW) AND ESTIMATED BIT-RATES (SECOND ROW)

FOR THE CLASSIFICATION OF SINGLE PREMOVEMENT TRIALS USINGRP

FEATURES(VP 1) AND ERD/ERSFEATURES(VP 2).

Tap-rate

2s 1s 0.5s

VP 1 (RP): ERR [%] 5.3 18.0 19.1

ITR [bpm] 18.6 20.0 52.9

VP 2 (ERD): ERR [%] 15.7 17.7 26.9

ITR [bpm] 11.9 19.7 16.9

frequency range, systematic comparison of the discriminability
of different features and classification analysis using combined
RP+ERD features, cf. [15].

B. Exploring the limits of single-trial classification with fine
spatial resolution

The information transmission rate of BCIs can be improved
if single-trial analyses of movement-related scalp EEG param-
eters could reflect not only the gross somatotopic arrangement
of, e.g., hand vs. foot, but also the finely graded representation
of individual fingers, potentially enabling a kind of ’mental
typewriting’.

To examine the quality of single-trial classification of BCI
signals from close-by brain regions we recorded 128-channel
EEGs of 14 healthy volunteers during selfpaced keypressing
with finger II or V of either hand.

The data were analyzed as follows: First, we used standard
averaging (time window -150 to -50 ms prior to keypress)
for statistical analysis, i.e., class-wise difference (e.g., ‘left
V’ minus ‘left II’) of these averaged potentials divided by



ENGLISHBBCI: EEG-BASED COMMUNICATION WITHOUT SUBJECT TRAINING 3

−500−1000 0 [ms]

−500−1000 0 [ms]

−50 ms−100 ms−150 ms

−150 ms −100 ms −50 ms

finger V left
[n= 153]

left II − left V
[t−scaled]

[µV]

0

−5

−10

[µV]

−8.0 µV 0 µV

0

−1.6484

1.6484

C2

C2

finger II left
[n= 278]

0

−5

−10

Fig. 2. Typical subject with clear and significantly distinguishable RP
topographies associated with movements of finger II vs. finger V. Surprisingly
the strongest difference is found at ipsilateral side (p < 0.05, see magenta
coloured field in the left hemisphere of the scalp on the right).

the estimated joint variance obeying a Student’st-distribution.
These values indicate the significance of the class differences
at level p< 0.05 when the respective threshold is exceeded in
one direction. Second, we used the BBCI linear classifier for
single-trial analyses [6].

The results can be grouped in three categories: (a) In 19%
of the datasets we identified distinguishable topographies of
the premovement negativity and obtained classification results
well above chance level (error rates range between 19–37%,
see Fig. 2).

(b) The second category (50.0% of the datasets) showed dis-
tinguishable topographies but classification results near chance
level (error rates range between 45% and 47%). (c) Finally
we found a third category (31% of the datasets) with weak
negativation of one of the two classes, resulting in high
differences between the mean amplitudes of the two classes
and therefore in classification results well above chance level
(error rates range between 23% and 38%).

The fact that it is in principle possible to distinguish the non-
invasively recorded RPs associated with movements of fingers
within the same hand in single trial analysis encourages us
in our efforts to improve the technical facilities necessary to
gather these existing physiological informations properly and
non-invasively.

C. Detection of ‘phantom limb commands’

Amputees might use BCIs to trigger movements of an
electromechanical prosthesis. Accordingly, we elaborated on
the standard BBCI paradigm to extend the usual 128-channel
EEG recordings also to patients with traumatic amputations of
one arm or hand. Specifically, we searched readiness potentials
(RP) and event-related desynchronization (ERD) associated
with real finger movements (intact side) and phantom (disabled
side) finger movements.

We solved the problem of acquiring premovement brain
activity of phantom movements which lack a time marker
signal such as a keypress in the following way: The patients
listened to an electronic metronome with two tones of alter-
nating pitch. While the deep sound indicated rest, concomitant
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Fig. 3. Scalp topographies of ERD/ERS.t-scaled power-differences between
phantom-movement and rest. The areas, where a significance level ofp =
0.05 is reached, are circumscribed by a magenta-colored line. Upper row: an
example for contralateral ERD ofµ- and β -activity (VP5 with right hand
amputation). Lower row: an example for a bilateral, mainly ipsilateral ERD
of µ- andβ -activity (VP7 with left hand amputation).

with the higher sound they had to perform either a finger
tap on a keyboard using the healthy hand or a phantom
movement with a phantom finger. Accordingly the absence
of a keypress allows the post-hoc identification of an phantom
finger movement intention and its approximate timing without
cued reaction paradigm.

We studied eight patients (1 w, 7 m; age 37–74 years) with
amputations between 16 and 54 years ago. Here, we report
first results concerning the ERD. Remarkably, we found that
all 8 patients showed significant (p < 0.05) ‘phantom-related’
ERD of µ- and β -frequencies (interval: -600 to 0 ms relative
to the beat) at the primary motor cortex: 4 patients over the
contralateral hemisphere, and 4 patients bilaterally, with 3 of
them showing the larger ERD ipsilaterally (Fig. 3). These
preliminary results encouraged the ongoing further analyses
on RP of phantom movements and on error rates of off-line
single-trial classifications which eventually could form a basis
for BCI-control of a prosthesis driven by phantom limb motor
commands.

III. A PPROACH2: BCI CONTROL BASED ONIMAGINED

MOVEMENTS WITHOUT SUBJECTTRAINING

The RP feature presented in the previous section allows
an early distinction between motor related mental activities
since it reflects movement intent. But even in repetative
movements the discrimination decays already after about 1
second, cf. [16]. Accordingly we take an alternative approach
for the design of proportional BCI-control, like continuous
cursor control. Here we focus on modulations of sensorimotor
rhythms evoked by imagined movements. Our first feedback
study ([17]) demonstrates that it is possible to do so following
our philosophy of minimal subject training while still obtain-
ing high information transfer rates.

A. Experimental Setup

We designed a fixed setup for a feedback study with 6
subjects who all had no or very little experience with BCI
feedback. Brain signals were measured from 118 electrodes
mounted on the scalp. To exclude the possibility of influence
from non central nervous system activity, EOG and EMG
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were recorded additionally. Those channels were not used to
generate the feedback signal.

Each experiment began with a so called calibration mea-
surement in which labeled trials of EEG data during motor
imagery were gathered. This data is used by signal processing
and machine learning techniques to estimate parameters of
a brain-signal to control-signal translation algorithm, cf. [17].
This algorithm can be applied online to continuously incoming
signals to produce an instantaneous feedback.

In the calibration measurement visual stimuli indicated
which of the following 3 motor imageries the subject should
perform: (L) left hand, (R) right hand, or (F) right foot.
The presentation of target cues was interrupted by periods of
random length, 1.75 to 2.25s, in which the subject could relax.

Then the experimenter investigated the data to adjust
subject-specific parameters of the data processing methods
and identified the two classes that gave best discrimination.
When this discrimination was satisfactory, a binary classifier
was trained and three different kinds of feedback application
followed. All data of each subject were recorded on the same
day (calibration plus three feedback applications).

During preliminary feedback experiments we realized that
the initial classifier often was performing suboptimal, such that
the bias and scaling had to be adjusted. Later investigations
have shown that this adaption is needed to account for the
different experimental condition of the (exciting) feedback
situation as compared to the calibration measurement.

In the first feedback application (‘position controlled cur-
sor’), the output of the classifier was directly translated to the
horizontal position of a cursor. There were two target fields
on the left resp. right edge of the screen, one of which was
highlighted at the beginning of a trial. The cursor started in
a deactivated mode (in which it could move but not trigger a
target field) and became activated after the user has held the
cursor in a central position for 500 ms. The trial ended when
the activated cursor touched one of the two target fields. That
field was then colored green or red, depending on whether it
was the correct target or not. The cursor was deactivated and
the next target was highlighted.

The second feedback application (‘rate controlled cursor’)
was very similar, but the control of the cursor was relative to
the actual position, i.e., at each update step a fraction of the
classifier output was added to the actual cursor position. Each
trial started by setting the cursor to the middle of the screen
and releasing it after 750 ms.

The last feedback application (‘basket game’, similar to
applications in [18] and [19]) operated in a synchronous mode.
A ball was falling down at constant speed while its horizontal
position was controlled by the classifier output. At the bottom
of the screen there were three target fields, the outer having
half the width of the middle fields to account for the fact that
outer positions were easier to hit.

B. Results

To compare the results of the different feedback sessions we
use the information transfer rate (ITR, [1]) measured in bits
per minute (bpm). In contrast to error rates or ROC curves

TABLE II

THE FIRST TWO COLUMNS COMPARE THE ACCURACY AS CALCULATED BY

CROSS-VALIDATION ON THE CALIBRATION DATA WITH THE ACCURACY

OBTAINED ONLINE IN THE FEEDBACK APPLICATION ‘ RATE CONTROLLED

CURSOR’. COLUMNS THREE TO EIGHT REPORT THE INFORMATION

TRANSFER RATES(ITR) MEASURED IN BITS PER MINUTE. OBTAINED IN

ALL FEEDBACK APPLICATIONS FOR EACH FEEDBACK APPLICATION THE

FIRST COLUMN REPORTS THE AVERAGEITR OF ALL RUNS (OF 25 TRIALS

EACH), WHILE THE SECOND COLUMN REPORTS THE PEAKITR OF ALL

RUNS. SUBJECT2 DID NOT ACHIEVE BCI CONTROL (64.6%ACCURACY IN

THE CALIBRATION DATA ).

acc [%] cursor pos.c. cursor rate c. basket

cal. fb. overall peak overall peak overall peak

1 95.4 80.5 7.1 15.1 5.9 11.0 2.6 5.5

3 98.0 98.0 12.7 20.3 24.4 35.4 9.6 16.1

4 78.2 88.5 8.9 15.5 17.4 37.1 6.6 9.7

5 78.1 90.5 7.9 13.1 9.0 24.5 6.0 8.8

6 97.6 95.0 13.4 21.1 22.6 31.5 16.4 35.0

∅ 89.5 90.5 10.0 17.0 15.9 27.9 8.2 15.0

the ITR takes different duration of trials and different number
of classes into account. Table II summarizes the information
transfer rates that were obtained by the 6 subjects in the three
feedback sessions. Highest ITRs were obtained in the ‘rate
controlled cursor’ scenario which has a asynchronous protocol.

One point that is to our knowledge special about the BBCI
is that it can be operated at a high decision speed, not
only theoretically, but also in practice. In the position control
the average trial length was 3 seconds, in rate control 2.5
seconds. In the basket feedback the trial length is constant
(synchronous protocol) but was individually selected for each
subject, ranging from 2.1 to 3s. The fastest subject was no. 4
which performed at an average speed of one decision every
1.7s. The most reliable performance was achieved by subject
3: only 2% of the total 200 trials in the rate controlled cursor
were misclassified at an average speed of one decision per
2.1s.

In a later experiment subject 3 operated a mental typewriter
based the second feedback application. The alphabet (includ-
ing a space and a deletion symbol) was split into two parts and
those groups of characters were placed on the left resp. right
side of the screen. The user selects one subgroup by moving
the cursor to the respective side and the process is iterated
until a ‘group’ of one character is selected. The splitting was
done alphabetically based on the probabilities of the German
alphabet, but no elaborated language model was used. In a
free spelling mode subject 3 spelled 3 german sentences with
a total of 135 characters in 30 minutes, which is a typing
speed of 4.5 letters per minutes. Note that all erros have been
corrected by using the deletion symbol. For details, see [16].

C. Investigating the Dependency of BCI Control

The fact that it is in principle possible to voluntarily mod-
ulate motorsensory rhythms without concurrent EMG activity
was studied in [20]. Nevertheless it has to be checked for every
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BCI experiment involving healthy subjects. For this reason we
always record EMG signals even though they are not used
in the online system. On one hand we investigated classwise
averaged spectra, their statistical significant differences and
the scalp distributions and time courses of the power of the
µ andβ rhythm. The results substantiated that differences of
the motor imagery classes indeed were located in sensorimotor
cortices and had the typical time courses (except for subject 2
in whom no consistent differences were found). On the other
hand we compared how much variance of the classifier output
and how much variance of the EMG signals can be explained
by the target class. Much in the spirit of [20] we made
the following analysis using the squared bi-serial correlation
coefficient r2. The r2-value was calculated for the classifier
output and for the band-pass filtered and rectified EMG signals
of the feedback sessions. Then the maximum of those time
series was determined resulting in oner2-value per subject
and feedback session for EMG resp. for the BCI classifier
signal. Ther2 for EMG was in the range 0.01 to 0.08 (mean
0.04±0.03) which is very low compared to ther2 for the BCI
classifier signal which was in the range 0.36 to 0.79 (mean
0.52±0.15). The fact that the BBCI works without being
dependent on eye movements or visual input was additionally
verified by letting two subjects control the BBCI with closed
eyes which resulted in a comparable performance as in the
closed loop feedback.

IV. L INES OFFURTHER IMPROVEMENT

A. Combination of Different Features

Significant gain can be expected from a combination of
several single features if these single features provide comple-
mentary information for the classification task. In case of sen-
sorimotor cortical processes accompanying finger movements
Babiloni et al. [21] demonstrated that RP and ERD indeed
show up with different spatio-temporal activation patterns
across primary (sensori-)motor cortex (M-1), supplementary
motor area and the posterior parietal cortex. This finding is
backed by invasive (subdural) EEG recordings [22] during
brisk, self-paced finger and foot movements.

These observations led us to the theoretical investigation
of how to combine several single features. (Note that single
feature does not mean one dimensional feature.) Technically
speaking, given several feature vectors, the question is how to
optimally combine the information, i.e., when classifying the
joint features we expect a better result than with the best single
feature. Techniques suggested in the literature are voting, using
a meta classifier or a winner-takes-all strategy. When applied
to our BCI problem with RP and ERD derived features all
these method did not (or only marginally) improve the clas-
sification accuracy compared to the classification of the best
single feature in our setting. A substantial gain in classification
could be obtained only after incorporating a-priori knowledge
into the feature combination. We made the assumption that
the feature vectors reflecting ERD and RP effects indeed are
independent. Under a gaussian assumption we were able to
derive the optimal method of combining features, that turns out
to be simple, cf. [23], [15]. It can be described as quaderatic

discriminant analysis (QDA), where cross-feature coefficients
in the estimated covariance matrix are set to zero. Additionally
assuming equal covariance matrices leads to a linear feature
combination variant. Even when these assumptions are not met
perfectly in practice, a good performance by the novel method
can be expected.

B. CSSP: CSP with simultaneous spectra optimization

The idea of the CSSP algorithm ([24]) is to optimize very
simple frequency filters (with one delay tap) for each channel
at the same time as the spatial filters in the CSP algorithm.

Given si , the signalsτ
i is defined to be the signalsi delayed

by τ ms. In CSSP the usual CSP approach is applied to the
concatenation ofsi and sτ

i in the channel dimension, i.e., the
delayed signals are treated as new channels. By this delay
embedding the CSP analysis is solved in the state space,
allowing to neglect or emphasize specific frequency bands
at each electrode position. The performance of the method
depends on the choice ofτ which can be accomplished
by some validation approach on the calibration data. More
complex frequency filters can be found by concatenating more
EEG-signals with several delays. But in [24] it was concluded
that in typical BCI situations where only small training sets are
available, the choice of only one delay step is most effective.
Different approaches that implement one global but more
complex spectral filter into CSP are under investigation.

V. D ISCUSSION ANDOUTLOOK

The Berlin Brain-Computer Interface project makes use
of a machine learning approach towards BCI. Working with
high dimensional, complex features obtained from 128 channel
EEG allows the system a distinct flexibility for adapting to the
specific individual characteristics of each user’s brain.

In one line of investigation we studied the detectability of
premovement potentials in healthy subjects. It was shown that
high bit rates in single-trial classifications can be achieved by
fast-paced motor commands. An analysis of motor potentials
during movements with finger II and V within one hand
exposed a possible way of further enhancement. A preliminary
study involving patients with traumatic amputations showed
that the results can in principle be expected to transfer to phan-
tom movements. A restriction seems to be that the detection
accuracy decreases with longer loss of the limb.

In a second approach we investigate the possibility of
establishing BCI control based on motor imagery without
subject training. The result from a feedback study with six sub-
jects impressively demonstrates that our system (1) robustly
transfers the discrimination of mental states from the training
to the feedback sessions, (2) allows a very fast switching
between mental states, and (3) provides reliable feedback
directly after a short calibration measurement and machine
training without the need that the subject adapts to the system,
all at high information transfer rates, see Table II.

Recent BBCI activities comprise (a) mental typewriter ex-
periments, with an integrated detector for the error potential,
an idea that has be investigated off-line in several studies, cf.
[6], [25], [26], [27], (b) the online use of combined feature
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and multi-class paradigms and (c) real-time analysis of mental
workload in subjects engaged in real world cognitive tasks,
e.g., in driving situations.

Our future studies will strive for 2D cursor control and
robot arm control, still maintaining our philosophy of minimal
subject training.
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