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The Berlin Brain-Computer Interface: EEG-based
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Abstract—The Berlin Brain-Computer Interface (BBCI) There is a huge variety of BCI systems, see [1], [3], [4] for a
project develops a non-invasive BCI system whose key featuresproad overview. Our Berlin Brain-Computer Interface (BBCI)
are (1) the use of well-established motor competences as controliS a non-invasive, EEG-based system, which does not use

aradigms, (2) high-dimensional features from 128-channel EEG . . .
gnd 3) advancegd machine leaming techniques. As reported evoked potentials. BCI systems relying on evoked potentials

earlier, our experiments demonstrate that very high information ~can typically achieve higher information transfer rates (ITRs)
transfer rates can be achieved using the readiness potential (RP) in contrast to systems working on unstimulated brain signals,

when predicting the laterality of upcoming left vs. right hand  ¢f. [5]. On the other hand with evoked potential BCls the

movements in healthy subjects. A more recent study showed ser is constantly confronted with stimuli, which can become
that the RP similarily accompanies phantom movements in arm .
exhaustive after longer usage.

amputees, but the signal strength decreases with longer loss of the . .
limb. In a complementary approach oscillatory features are used  Here we present two aspects of the main approach taken in
to discriminate imagined movements (left hand vs. right hand the BBCI project. The first is based on the discriminability
vs. foot). In a recent feedback study with 6 healthy subjects of premovement potentials in self-paced movements. Our
with no or very little experience with BCI control, 3 subjects nitia| studies ([6]) show that high information transfer rates

achieved an information transfer rate above 35 bits per minute . . . e
(bpm), and further two subjects above 24 and 15 bpm, while C&0 be obtained from single-trial classification of fast-paced

one subject could not achieve any BCI control. These results are Motor commands. Additional investigations point out ways
encouraging for an EEG-based BCI system in untrained subjects of improving bit rates further, e.g., by extending the class of
that is independent of peripheral nervous system activity and does detectable movement related brain signals to the ones encoun-
not rely on evoked potentials even when compared to results with (arad when moving single fingers within one hand. A more
very well-trained subjects operating other BCI systems. recent study showed that it is indeed possible to transfer the
Index Terms—Brain-Computer Interface, Classification, Com-  results obtained with regard to movement intentions in healthy
mon Spatial Patterns, EEG, ERD, Event-Related Desynchro- ¢ piacis to phantom movements in patients with traumatic
nization, Information Transfer Rate, Readiness Potential, RP, .
Machine Learning, Single-Trial Analysis amput_atlons. .

Taking another approach, we established a BCl system
based on motor imagery that works without subject training.
Using general, complex features derived from 128-channel

The aim of Brain-Computer Interface (BCI) research is tggG recordings the system automatically adapts to the specific
establish a new augmented communication system that trapgsin signals of each user by using advanced techniques of
lates human intentions—reflected by suitable brain signalSpmchine learning and signal processing [7], [8], [9]. This
into a control signal for an output device such as a compproach contrasts with the operant conditioning variant of
puter application or a neuroprosthesis [1]. According to thec| in which the subject has to learn to control a specific EEG
definition put forth at the first international meeting for BCkeatyre which is hard-wired in the BCI system. According to
technology in 1999, a BCI “must not depend on the brainife motto 'let the machines learn’ our approach minimizes
normal output pathways of peripheral nerves and musclage need for subject training and copes with one of the major
[2]. This viewpoint is certainly for research purpose in ordeghallenges in BCI research: the huge inter-subject variability

to have clear evidence of what information a systems uses &fi¢h respect to patterns and characteristics of brain signals.
where it comes from. Nevertheless there seems to be consensus

in the BCI community that in specific BCI applications (e.g., |l. APPROACH1: SELF-PACED AND PHANTOM FINGER
for paralyzed patients) it may be reasonable to get all signals MOVEMENTS
that provide useful information regardless of their origin. A, Exploiting the limits of the refractory behavior in fast-

. . .. paced motor commands
This work was supported in part by grants of tBeindesministerium ) ) )
fur Bildung und ForschungBMBF), FKZ 01IBEO1A/B, by theDeutsche The main goal of BCI is to improve autonomy of people
ForschungsgemeinschdDFG), FOR 375/B1, and by the IST Programme ofyith severe motor disabilities by new communication and
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2002-506778. This publication only reflects the authors’ views. control optons. €S€ persons cannot move but can thin
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I. INTRODUCTION
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taprate: 2s 0.5s

of main pyramidal peri-central neurons, see [10]. It leads

to a negativation of the EEG over primary motor cortices ”g:‘

during motor preparation that peaks about movement onset. Incs/ca

hand movements it is focused contralateral to the performigg

hand, cf. [11], [12] and references therein for an overvievg

The preparation of movements is reflected also by an ERD,

i.e., an attenuation of pericentral- and g-rhythms in the left

corresponding motor areas. With respect to unilateral hand 3¢,

movements these blocking effects are visible bilateral but with

a clear predominance contalateral to the performing hand,

cf. [13]. In controls, imagined movements produce motor right

. . . hand

related signals ([14]), but less pronounced in comparison 4o cs,ca

executed movements probably owing to duality of the task

of imagining a movement but at the same time vetoing thge

actual movement. Therefore a real movement made by%;a 01s

healthy subject is more like the motor-command in disabled |

persons than an imagined movement. Our main interest in"ne

the following experiment was the examination sfability

and refractory behavior of motor related brain signaisth

i i ; i it Fig. 1. Averaged data for RP (readiness potential) in VP 1 and ERD (event

Increasm.g speed of execuuqn and the as_somatgd bit-rate. related desynchronization) of the rhythm (8-14Hz) in VP 2. The tap-rate
For this reason we examined the cortical signals of eXgies from 2s in the leftmost to 0.5s in the rightmost column. The black line

cuted finger movements in experimental settings with differeintall subplots shows the activation over ipsilateral cerebral cortex before/after

movement speeds. We started a series of experiments viitper movement. The red line shows the activation over contralateral cerebral

) . . cortex before/after finger movement.

healthy volunteers performing self-paced finger-movements on

a computer keyboard with approximate tap-rates of 30, 60 TABLE |

and 120 keystrokes per minute (kpm). EEG was recordedRrRROR RATES(FIRST ROW) AND ESTIMATED BIT-RATES (SECOND ROW)

from 64 Ag/AgCI scalp electrodes. Electromyogram (EMG)roR THE CLASSIFICATION OF SINGLE PREMOVEMENT TRIALS USINRP

01!

//\ VAVARN
<~ \/ \

N

ms -1000 -500 0 500 -500 0 250 -250 0 150

was obtained fromM. flexor digitorum communifrom both FEATURES(VP 1) AND ERD/ERSFEATURES(VP 2).
sides to detect EMG onset. EEG was segmented, averaged and

baseline-corrected in the case of RP. In case of ERD/ERS we Tap-rate

first determined the individual power-peaks in fhérequency 2s 1s 0.5s

range from power spectral density plots and chose subject-
specific band-pass filters accordingly. The lower limit was
in every case between 7 and 9Hz and upper bound was
13 or 14 Hz. After band-pass filtering, signals were Laplace-
transformed, rectified, segmented, class-wise averaged and
smoothed. Fig. 1 shows averaged data from the two subjects

(VP 1 and VP 2), RPs for the first and ERDs for the second. . . L .
One can see for RP from VP 1 predominantly contralateripduency range, systematic comparison of the discriminability

negativation before EMG-onset (which is 120 ms before keg different features and classification analysis using combined

press) and regeneration after movement. In contrast to fRe+ERD features, cf. [15].

behavior of the RP a different kind of activation/deactivation

behavior could be seen in the-bandpass filtered data. MostB. Exploring the limits of single-trial classification with fine
prominent in the preparatory phase of the movement is tRBatial resolution

ipsilateral synchronization along with a slide contralateral The information transmission rate of BCls can be improved
desynchronization. In the single-trial classification of the pré-single-trial analyses of movement-related scalp EEG param-
movement period (-1400 to -120ms relative to keypressjers could reflect not only the gross somatotopic arrangement
corresponding to the features shown in Fig. 1, the errof, e.g., hand vs. foot, but also the finely graded representation
increased with faster tap rates, see Table I. Nevertheless #fiéndividual fingers, potentially enabling a kind of 'mental
highest information transfer rate was obtained at the highegpewriting'.

speed (0.5s) for the RP feature and at medium speed (1sJo examine the quality of single-trial classification of BCI
for the ERD feature. This finding, indicating that the refracsignals from close-by brain regions we recorded 128-channel
tory period is shorter for RP, needs to be studied in moEEGs of 14 healthy volunteers during selfpaced keypressing
subjects. This preliminary study indicates that different typesith finger 1l or V of either hand.

of features are available for the prospective identification of The data were analyzed as follows: First, we used standard
movement intentions and that higher bit rates can be achievaeraging (time window -150 to -50ms prior to keypress)
in tapping speeds of 60 kpm and faster. Further investigatifor statistical analysis, i.e., class-wise difference (e.g., ‘left
with more subjects will include ERD/ERS effects in tife V' minus ‘left II') of these averaged potentials divided by

VP 1 (RP)  ERR [%] 53 180 19.1
ITR [oppm] 18.6 20.0 52.9
VP 2 (ERD) ERR[%] 157 17.7 26.9
ITR [bppm] 11.9 19.7 16.9
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[n=153]
v

-10| Cc2

~150 ms Fig. 3. Scalp topographies of ERD/ERSscaled power-differences between
7500 500 s) o o phantom-movement and rest. The areas, where a significance leyeof

0.05 is reached, are circumscribed by a magenta-colored line. Upper row: an

. . . . N L example for contralateral ERD qf- and §-activity (VP5 with right hand
Fig. 2. _Typlcal S.UbJeCt .W'th clear and S|gn|f|cantly (_Jlstlngwshable_z .RPmputation). Lower row: an example for a bilateral, mainly ipsilateral ERD
topographies as_somated \_Nlth movements of flnge_r Il vs. finger V. Surprisin 11~ and B-activity (VP7 with left hand amputation).
the strongest difference is found at ipsilateral sige<(0.05, see magenta
coloured field in the left hemisphere of the scalp on the right).

VP7

'—1 .6484

with the higher sound they had to perform either a finger

the estimated joint variance obeying a Studentlistribution. t@P on a keyboard using the healthy hand or a phantom
These values indicate the significance of the class differendgveément with a phantom finger. Accordingly the absence
at level p < 0.05 when the respective threshold is exceeded fi & keypress allows the post-hoc identification of an phantom
one direction. Second, we used the BBCI linear classifier fBRger movement intention and its approximate timing without
single-trial analyses [6]. cued reaction paradigm. _
The results can be grouped in three categories: (a) In 1994/Ve studied eight patients (1 w, 7 m; age 37-74 years) with
of the datasets we identified distinguishable topographies @fPutations between 16 and 54 years ago. Here, we report
the premovement negativity and obtained classification resufst results conceming the ERD. Remarkably, we found that
well above chance level (error rates range between 19-373} 8 patients showed significanp € 0.05) ‘phantom-related’
see Fig. 2). ERD of u- and -frequencies (interval: -600 to O ms relative
(b) The second category (50.0% of the datasets) showed dfsthe beat) at the primary motor cortex: 4 patients over the
tinguishable topographies but classification results near chag@gtralateral hemisphere, and 4 patients bilaterally, with 3 of
level (error rates range between 45% and 47%). (c) Finafljem showing the larger ERD ipsilaterally (Fig. 3). These
we found a third category (31% of the datasets) with wed¥eliminary results encouraged the ongoing further analy_ses
negativation of one of the two classes, resulting in high" RP of phantom movements and on error rates of off-line
differences between the mean amplitudes of the two classigle-trial classifications wh!ch e_ventually could fo_rm a basis
and therefore in classification results well above chance leJl BCI-control of a prosthesis driven by phantom limb motor
(error rates range between 23% and 38%). commands.
The fact that it is in principle possible to distinguish the non-
invasively recorded RPs associated with movements of finger§ll. APPROACH2: BCl CONTROL BASED ONIMAGINED
within the same hand in single trial analysis encourages us MOVEMENTS WITHOUT SUBJECT TRAINING
in our efforts to improve the technical facilities necessary to The RP feature presented in the previous section allows
gather these existing physiological informations properly angh early distinction between motor related mental activities
non-invasively. since it reflects movement intent. But even in repetative
movements the discrimination decays already after about 1
second, cf. [16]. Accordingly we take an alternative approach
. ) for the design of proportional BCl-control, like continuous
Amputees might use BCIs to trigger movements of gfy, o control. Here we focus on modulations of sensorimotor
electromechanical prosth_eS|s. Accordingly, we elaborated thms evoked by imagined movements. Our first feedback
the standard BBCI paradigm to extend the usual 128-changflyy ([17]) demonstrates that it is possible to do so following

EEG recordings also to patients with traumatic amputations gf . philosophy of minimal subject training while still obtain-
one arm or hand. Specifically, we searched readiness potentj high information transfer rates

(RP) and event-related desynchronization (ERD) associate
with real finger movements (intact side) and phantom (disabled ]
side) finger movements. A. Experimental Setup

We solved the problem of acquiring premovement brain We designed a fixed setup for a feedback study with 6
activity of phantom movements which lack a time markesubjects who all had no or very little experience with BCI
signal such as a keypress in the following way: The patierftsedback. Brain signals were measured from 118 electrodes
listened to an electronic metronome with two tones of altemounted on the scalp. To exclude the possibility of influence
nating pitch. While the deep sound indicated rest, concomitémtm non central nervous system activityy, EOG and EMG

C. Detection of ‘phantom limb commands’
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" TABLE II
were recorded additionally. Those channels were not used110
HE FIRST TWO COLUMNS COMPARE THE ACCURACY AS CALCULATED BY

generate the feedback signal.
. . . . CROSSVALIDATION ON THE CALIBRATION DATA WITH THE ACCURACY
Each experiment began with a so called calibration mea- )
. . . . OBTAINED ONLINE IN THE FEEDBACK APPLICATION RATE CONTROLLED
surement in which labeled trials of EEG data during motor

imagery were gathered. This data is used by signal processin
. . . . TRANSFER RATES(ITR) MEASURED IN BITS PER MINUTE OBTAINED IN
and machine learning techniques to estimate parameters 0
. . . . . ALL FEEDBACK APPLICATIONS FOR EACH FEEDBACK APPLICATION THE
a brain-signal to control-signal translation algorithm, cf. [17].
. " y . . . . "FIRST COLUMN REPORTS THE AVERAGHTR OF ALL RUNS (OF 25 TRIALS
This algorithm can be applied online to continuously incoming
. . EACH), WHILE THE SECOND COLUMN REPORTS THE PEAKTR OF ALL
signals to produce an instantaneous feedback.
In the calibration measurement visual stimuli indicate
which of the following 3 motor imageries the subject should

perform: (L) left hand, (R) right hand, or (F) right foot.

CURSOR. COLUMNS THREE TO EIGHT REPORT THE INFORMATION

EUNS. SUBJECT2 DID NOT ACHIEVE BC| CONTROL (64.6%ACCURACY IN
THE CALIBRATION DATA).

The presentation of target cues was interrupted by periods of CZIC ¢ [%]fb Of/::;ﬁr pops;.k O\C/::Zﬁr ra;i;; Over:I?Ske;eak
random length, 1.75 to 2.25s, in which the subject could relax. ' '

Then the experimenter investigated the data to adjust 954 805 71 151 59 11.0 26 55
subject-specific parameters of the data processing methods 98.0 98.0 127 203 244 354 96 16.1
and identified the two classes that gave best discriminatiord 782 885 89 155 17.4 371 66 97
When this discrimination was satisfactory, a binary classifie® 78.1  90.5 79 131 9.0 245 6.0 88

was trained and three different kinds of feedback applicatior? 97.6 95.0 134 211 226 315 164 350
followed. All data of each subject were recorded on the samg
day (calibration plus three feedback applications).

During preliminary feedback experiments we realized that

the initial classifier often was performing suboptimal, such thﬁ%e ITR takes different duration of trials and different number

the bias and scaling had to be adjusted. Later investigationfs . . . :
X L classes into account. Table Il summarizes the information
have shown that this adaption is needed to account for the

. : . . ransfer rates that were obtained by the 6 subjects in the three
different experimental condition of the (exciting) feedbac : ; . . .
o N eedback sessions. Highest ITRs were obtained in the ‘rate
situation as compared to the calibration measurement. , . :
controlled cursor’ scenario which has a asynchronous protocol.

Ir,1 the first feedback appl!qatlon (pgsmon controlled cur One point that is to our knowledge special about the BBCI
sor’), the output of the classifier was directly translated to the . . e
: - . IS that it can be operated at a high decision speed, not
horizontal position of a cursor. There were two target fields : . . "
. . only theoretically, but also in practice. In the position control
on the left resp. right edge of the screen, one of which was

highlighted at the beginning of a trial. The cursor started i average trial length was 3 seconds_, In rate (_:ontrol 2:5
. - O . seconds. In the basket feedback the trial length is constant
a deactivated mode (in which it could move but not trigger

target field) and became activated after the user has held {%J%nchronous protocol) but was individually selected for each

cursor in a central position for 500 ms. The trial ended Whesn .JeCt’ ranging from 2.1 to 3s. The fastest SUbJeCt. was no. 4
which performed at an average speed of one decision every

the activated cursor touched one of the two target fields. Thf‘%s. The most reliable performance was achieved by subject

field was then colored green or red, depending on \_/vhether?)l:t nly 2% of the total 200 trials in the rate controlled cursor
was the correct target or not. The cursor was deactivated an . e g

N were misclassified at an average speed of one decision per
the next target was highlighted.

L . 1s.
The second feedback application (rate controlled cursorz) In a later experiment subject 3 operated a mental typewriter

\t/r\:as vc?[ry Is'm'l?t?’ :uf the (f[ontror: of tdhet cu;sor W?rs rt?lantlvef fﬁased the second feedback application. The alphabet (includ-
€ aclual position, 1.€., at €ach update step a fraction of fiz space and a deletion symbol) was split into two parts and

89.5 90.5 100 17.0 159 279 8.2 15.0

L o the cursor to the respective side and the process is iterated
The last feedback application (‘basket game’, smﬂar% P P

licati in 1181 and 119 ted i h ntil a ‘group’ of one character is selected. The splitting was
appiications |n.[ ] and [19]) operated in a Synchronous mocg, o alphabetically based on the probabilities of the German
A ball was falling down at constant speed while its horizont

%Iphabet, but no elaborated language model was used. In a

position was controlled by the classifier output. At the bono'??ee spelling mode subject 3 spelled 3 german sentences with
of the screen there were three target fields, the outer hav%?%tal of 135 characters in 30 minutes, which is a typing
half the width of the middle fields to account for the fact thaépeed of & letters per minutes. Note that,all erros have been

outer positions were easier to hit. corrected by using the deletion symbol. For details, see [16].

B. Results C. Investigating the Dependency of BCI Control

To compare the results of the different feedback sessions w& he fact that it is in principle possible to voluntarily mod-
use the information transfer rate (ITR, [1]) measured in bitdate motorsensory rhythms without concurrent EMG activity
per minute (bpm). In contrast to error rates or ROC curvegs studied in [20]. Nevertheless it has to be checked for every
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BCI experiment involving healthy subjects. For this reason wiscriminant analysis (QDA), where cross-feature coefficients
always record EMG signals even though they are not usktdthe estimated covariance matrix are set to zero. Additionally
in the online system. On one hand we investigated classwassuming equal covariance matrices leads to a linear feature
averaged spectra, their statistical significant differences atmmbination variant. Even when these assumptions are not met
the scalp distributions and time courses of the power of tiperfectly in practice, a good performance by the novel method
u and B rhythm. The results substantiated that differences oén be expected.

the motor imagery classes indeed were located in sensorimotor

cortices and had the typical time courses (except for subjecg2 cssp: csp with simultaneous spectra optimization
in whom no consistent differences were found). On the other . . . o
The idea of the CSSP algorithm ([24]) is to optimize very

hand we compared how much variance of the classifier output
W b W mieh van Mer outhy ple frequency filters (with one delay tap) for each channel

and how much variance of the EMG signals can be explaingl" ) o 4 .
g P d t the same time as the spatial filters in the CSP algorithm.

by the target class. Much in the spirit of [20] we ma atth . ) . .
the following analysis using the squared bi-serial correlatign Givens, the signals® is defined to be the S|gnal de!ayed
tms. In CSSP the usual CSP approach is applied to the

coefficientr2. The r2-value was calculated for the classifier”y : - and< in the ch | di R h
output and for the band-pass filtered and rectified EMG sign ncatenapon of ands in the channel dimension, € the
glayed signals are treated as new channels. By this delay

of the feedback sessions. Then the maximum of those ti _ s .
embedding the CSP analysis is solved in the state space,

series was determined resulting in orfevalue per subject lowi | hasi ific f band
and feedback session for EMG resp. for the BCI classifig}owmg to neglect or emphasize specific frequency bands

signal. Ther? for EMG was in the range 0.01 to 0.08 (meal‘;fjlt eacg eIectr(r)]de p;]o_sitiorgf Thﬁ. p;]erformr;nce of thel_n;]etgod
0.04+0.03) which is very low compared to thé for the BCI epends on the choice which can be accomplishe

classifier signal which was in the range 0.36 to 0.79 (megH some validation _approach on the calibration dat_a. More
complex frequency filters can be found by concatenating more

0.52+-0.15). The fact that the BBCI works without bein G-sianals with | del But in [241 it luded
dependent on eye movements or visual input was additiongFtpE -signais with several detays. but in [24] i was conclude
at in typical BCI situations where only small training sets are

verified by letting two subjects control the BBCI with closed . ; . :
y g J ilable, the choice of only one delay step is most effective.

eyes which resulted in a comparable performance as in .
Diiferent approaches that implement one global but more
closed loop feedback. L . I
complex spectral filter into CSP are under investigation.

IV. LINES OF FURTHER IMPROVEMENT V. DISCUSSION ANDOUTLOOK

The Berlin Brain-Computer Interface project makes use
Significant gain can be expected from a combination of a machine learning approach towards BCIl. Working with
several single features if these single features provide comgiégh dimensional, complex features obtained from 128 channel
mentary information for the classification task. In case of seBEG allows the system a distinct flexibility for adapting to the

sorimotor cortical processes accompanying finger movemesgecific individual characteristics of each user’s brain.
Babiloni et al. [21] demonstrated that RP and ERD indeedIn one line of investigation we studied the detectability of
show up with different spatio-temporal activation patternsremovement potentials in healthy subjects. It was shown that
across primary (sensori-)motor cortex (M-1), supplementahygh bit rates in single-trial classifications can be achieved by
motor area and the posterior parietal cortex. This finding fast-paced motor commands. An analysis of motor potentials
backed by invasive (subdural) EEG recordings [22] duringuring movements with finger Il and V within one hand
brisk, self-paced finger and foot movements. exposed a possible way of further enhancement. A preliminary
These observations led us to the theoretical investigatistudy involving patients with traumatic amputations showed
of how to combine several single features. (Note that singleat the results can in principle be expected to transfer to phan-
feature does not mean one dimensional feature.) Technicathyn movements. A restriction seems to be that the detection
speaking, given several feature vectors, the question is howattcuracy decreases with longer loss of the limb.
optimally combine the information, i.e., when classifying the In a second approach we investigate the possibility of
joint features we expect a better result than with the best singigtablishing BCI control based on motor imagery without
feature. Techniques suggested in the literature are voting, ussudpject training. The result from a feedback study with six sub-
a meta classifier or a winner-takes-all strategy. When appligtts impressively demonstrates that our system (1) robustly
to our BCI problem with RP and ERD derived features atransfers the discrimination of mental states from the training
these method did not (or only marginally) improve the clase the feedback sessions, (2) allows a very fast switching
sification accuracy compared to the classification of the bdsttween mental states, and (3) provides reliable feedback
single feature in our setting. A substantial gain in classificatiatirectly after a short calibration measurement and machine
could be obtained only after incorporating a-priori knowledgeaining without the need that the subject adapts to the system,
into the feature combination. We made the assumption that at high information transfer rates, see Table II.
the feature vectors reflecting ERD and RP effects indeed ardRecent BBCI activities comprise (a) mental typewriter ex-
independent. Under a gaussian assumption we were ablepéoiments, with an integrated detector for the error potential,
derive the optimal method of combining features, that turns oam idea that has be investigated off-line in several studies, cf.
to be simple, cf. [23], [15]. It can be described as quaderaf@], [25], [26], [27], (b) the online use of combined feature

A. Combination of Different Features
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and multi-class paradigms and (c) real-time analysis of mented] G. Krausz, R. Scherer, G. Korisek, and G. Pfurtscheller, “Critical
workload in subjects engaged in real world cognitive tasks,
e.g., in driving situations.

Our future studies will strive for 2D cursor control and20]
robot arm control, still maintaining our philosophy of minimal
subject training. [21]
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