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BCI Competition 2003:
Data Set IIa – Spatial Patterns of

Self-Controlled Brain Rhythm Modulations
Gilles Blanchard and Benjamin Blankertz

Abstract— A brain-computer interface (BCI) is a system that
should in its ultimate form translate a subject’s intent into
a technical control signal without resorting to the classical
neuromuscular communication channels. By using that signal
to, e.g., control a wheelchair or a neuroprosthesis, a BCI could
become a valuable tool for paralyzed patients. One approach
to implement a BCI is to let users learn to self-control the
amplitude of some of their brain rhythms as extracted from
multi-channel EEG. Here we present a method that estimates
subject-specific spatial filters which allow for a robust extraction
of the rhythm modulations. The effectiveness of the method was
proved by achieving the minimum prediction error on data set
IIa in the BCI Competition 2003, which consisted of data from
three subjects recorded in 10 sessions.

Index Terms— brain-computer interface, single-trial classifica-
tion, self-regulation of brain rhythms, common spatial patterns,
feedback control

I. INTRODUCTION

THE goal of brain-computer interface (BCI) research is to
provide humans with a new communication channel that

allows to translate brain states via a computer into application
specific actions. At the first international meeting for BCI
technology it was agreed to reserve the term BCI for a system
that does not depend on the brain’s normal output pathways of
peripheral nerves and muscles, [1]. Some researcher use this
restriction to form the notion of an independent BCI. Such a
system may become a valuable tool for paralyzed patients who
may ultimately use it to control a wheelchair, a neuroprosthesis
or a computer application.

One of the pioneering labs of BCI research is the Wadworth
Center, NYS Department of Health, headed by Jonathan R.
Wolpaw. They established a BCI system in which users learn
to control the amplitude of their µ or β brain rhythms over
sensorimotor cortices, [2]. A feedback signal is calculated
from multi-channel EEG and used to control the movement
of a cursor on a computer screen which is observed by the
subject. This closed feedback loop allows subjects to adapt
their strategies in order to improve the recognition rates of the
BCI system.

A comprehensive data set of this type recorded from three
subjects was given in the BCI Competition 2003, cf. [3], [4].
Here we present our method to classify this data set, which
attained the minimal classification error on the competition’s
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test set. The labels of the test set were unknown during
analysis and could thus not be used for tuning the model. The
main difference between our approach and the original one
is the choice of spatial filters. While in the original approach
spatial filters are selected manually from a small repertoire of
very general filters (common average reference, small or large
laplacians) we determine specific spatial filters in a data-driven
manner by a common spatial pattern (CSP) analysis. While
this technique is not new from an algorithmic view point, the
way it is applied here is tailored to the requirements and novel
in (1) using CSPs for different frequency bands at the same
time and (2) extracting CSPs only with respect to one class.

II. THE DATA SET

A. Description of the data

Since this data set is described in detail in [4], see this
issue, we give only a summary here. EEG was recorded from
64 scalp electrodes at a sampling rate of 160 Hz during an
experiment of the following trial design. After a resting period
of 1 s during which the screen stays blank, a target appears
on the right side in one of four possible positions. Another
second later a cursor appears in the middle of the left side
and travels at a constant speed to the right. The vertical
movement of the cursor is determined by a linear combination
of the subject’s amplitude power in a µ and/or β frequency
band for 1 to 3 spatially filtered channels. When the cursor
reaches the right edge, the height of the cursor defines the
result target of the trial. The screen is cleared and the next
trial begins. The aim of the subject is to steer the cursor
such that the result target coincides with the target indicated
at the beginning of the trial. The choice of spatial filters,
feedback electrodes, and frequency bands is made subject-
specific according to preliminary experiments and stays fixed
then. In contrast, certain parameters like slope and intercept
of the linear equation that controls the cursor movement, are
updated online after each trial. Spatial filters are chosen from a
fixed repertoire like common average reference, small or large
laplacians, cf. [5].

B. The classification goal and its challenges

The data available to the competitors consisted of the full
recordings for ten 30-minute sessions from three subjects (A,
B, C). Each session contained 192 trials. The training set
consisted of all trials of the first 6 sessions which were labeled
with the target position code (top, up, down or bottom) and
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the result position code (corresponding to the position actually
reached by the cursor at the end of the 2 s feedback period),
giving 1152 labeled trials in all for each subject (except for
subject C, for which one of the sessions was corrupt). The
goal for the competitors was to classify the 768 unlabeled
trials for sessions 7 to 10, for each of the three subjects; the
class to predict was the unknown target position code. The
classifier had to be causal in the sense that it had to make
a prediction using only information coming from the present
trial and earlier trials. In the end, the classifier we used was
actually static (i.e., only depended on the present trial and
labeled training trials), so that this requirement was of course
satisfied.

The difficulty of this data set came from the fact that
the experiment included a feedback part (not known to the
competitors in extensive detail) mediated by the movement
of the cursor on the screen. While the original feedback
procedure tried to “learn” from the subjects (since some
parameters of the feedback procedure were updated after each
trial), it could be expected that conversely, the subjects were
probably trying to “learn” how to use the feedback procedure
to have a better control over the cursor’s movement. Somehow
the classification task implied to learn in an indirect way this
reciprocal feedback loop. The paradox lies in the fact that
the ultimately envisioned goal was to improve the feedback
procedure; but of course with a new feedback procedure the
subjects’ reactions would also probably be different.

C. Our approach to the classification task

From a high level perspective the task is a classification
problem with 4 classes (target positions). But regarding the
feedback design on a more basic level, control is accomplished
via a one-dimensional control variable that is defined by two
opposing brain states, one that makes the cursor go up and the
other makes the cursor go down. Accordingly the basic task is
to extract the subject’s intent with respect to those brain states.
So we came to the conclusion that it would be more reliable to
first take into account only the top and bottom classes. Indeed,
we hoped that for these two classes the subjects would try to
make the cursor always go up (or down) whatever the actual
movement of the cursor on the screen, in other words that
the feedback loop would be less influential. By contrast, we
expected that to reach the two intermediate target positions,
the feedback would be more influential since the subject would
constantly try to “correct” the position and movement of the
cursor (note that no information about the actual position of
the cursor on the screen during the trial was made available
to the competitors).

Induced by the original feedback method the two controlling
brain states are defined by the power of the µ/β rhythms over
sensorimotor cortices (strong power makes the cursor rise in
subjects A and C while it makes the cursor go down in subject
B). The next question to attack was how to extract features
that robustly reflect the subject’s intent. By robust we mean
that that the features should as little as possible be influenced
by task-unrelated signal components, such as physiological or
measurement artifacts or other ongoing brain activity. Since
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Fig. 1. Left: The r2 values across the spectrum for a single particular channel
(C3, common average reference) for discrimination of the classes top, bottom
(subject C). Intervals marked in gray indicate the frequency intervals that
have been chosen for this subject. Right: Scalp topography of the r2-values
for subject C in the frequency band 22–26 Hz.

the brain rhythms which are used to control the feedback
have (subject-) specific spatial distributions, see Fig. 1, our
choice was to use a Common Spatial Pattern (CSP) analysis
to determine spatial filters for each subject as described below.

III. FEATURE EXTRACTION AND CLASSIFICATION

A. Preliminary analysis

The goal of the preliminary analysis was to find good
discriminative power bands for each subject. For each channel
separately, we plotted the power spectra for the top and
bottom classes, then the individual channels r2-values (i.e.,
the proportion of the variance of the spectral power values
accounted for by the label information [6]) across the spectrum
corresponding to the discrimination of these two classes, see
Fig. 1. This allowed us to select the more discriminative
power bands (corresponding to peaks of r2-values). These
were slightly different for each subject; curiously enough,
while we kept 2 discriminative power bands for each subject
corresponding to the µ and β rhythms, the frequency bands
corresponded to noticeably higher frequencies that what had
been suggested by the providers of the data (for each subject
the typical frequency bands we kept were roughly 10–15 Hz
and 23–28 Hz while the providers reported to have used 8–
13 Hz or 18–24 Hz [4]). No trials were rejected due to artifacts.

B. Feature extraction by CSPs

In the end, for each subject we kept two band-passed signals
(using a linear causal filter) for each channel. The next step
was to find appropriate spatial filters to extract features that
robustly reflect the subject’s intention concerning the cursor
movement. To this end we used a Common Spatial Patterns
analysis. CSP is a technique known from statistical pattern
recognition [7] and was suggested by [8] for spatial analyses
of EEG signals, and more specifically by [9] to find spatial
structures of event-related (de-)synchronization (ERD/ERS) in
a BCI context. The CSP analysis for a two-class problem
consists in finding linear subspaces, i.e., linear combinations
of channels, for which the variance of the signal for one class
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Fig. 2. Spatial repartition of CSP coefficients on the scalp: shown are the
2 most significant CSPs of the µ (left side) and the β (right side) rhythm
for class top and subject C. On the left of each scalp is given the associated
eigenvalue. On the right of each scalp map the respective ERD curves are
shown, split into the four target classes (bottom (–), down (–), up (- -), top
(- -) ). The x–axis is time. The grayed interval [1 s, 3 s] is the period during
which the cursor is visible on the screen. This interval was fed into the CSP
algorithm.

is maximized while the variance of the other is minimized (we
then talk of CSPs associated to class x when the variance of
class x is maximized). More precisely, let Σi be the covariance
matrix of the trial-concatenated matrix of dimension [channels
× concatenated time-points] belonging to the respective label
i ∈ {1, 2}. The CSP analysis consists in calculating a matrix
R and diagonal matrix D with elements in [0, 1] such that

RΣ1R
T = D and RΣ2R

T = 1 − D.

which can easily be done by whitening and spectral theory.
The projection that is given by the ith row of matrix R

has a relative variance of di (ith element of D) for trials
of class 1 and relative variance 1 − di for trials of class 2.
Typically one would retain some projections corresponding to
the highest eigen-values di, i.e., CSPs for class 1, and some
corresponding to the lowest eigenvalues, i.e., CSPs for class 2.
For an extension of the CSP algorithm to multi-class problems,
see [10], [11].

We performed this analysis for the segment of recorded
signals corresponding to the time period [1 s, 3 s] where the
cursor is visible on the screen. (The point t= 0 s for each
trial corresponds to the time at which the target appears on
the screen.) Here again, only the classes top, bottom were
considered to extract CSPs. It turned out that, for all of the
subjects, the CSPs associated to only one of the two classes
{top, bottom} were significant (the significance of a CSP is
measured by its associated eigenvalue), but not the same class
for everyone: for subjects A and C, the top class produced the
most significant eigenvalues; for subject B, it was the bottom
class, see Sec. II-C. For each subject, we decided to keep the
first two CSPs for the significant class in each frequency band,
thus keeping in total 4 CSPs for each subject, see Fig. 2.

C. Final classifier

For investigation purposes, we also drew the ERD/ERS
curves of the CSP channels, see Fig. 2. They were calculated
by squaring the band-pass filtered CSP channels, smoothing
them in time, and averaging over training trials for the different
target classes. This is a standard procedure as described, e.g.,
in [12]. The observation that the ERD/ERS curves had specific

temporal evolutions for each target motivated to take the
following features for classification: the channels in the time
period [1 s,4 s] were projected onto the 4 CSPs. Fourier power
coefficients were calculated for these four signals (for the
frequency bands corresponding to the bands from which the
CSPs were respectively extracted), in successive windows of
size 1 s with an overlap of 0.5 s. The feature vector of one trail
was the concatenation of the power values of all 5 subwindows
and all four channels.

The final classifier was a regularized linear discriminant
trained over the full set of training examples (i.e., using all
four classes this time), with the regularization parameter de-
termined by cross-validation. Note that this method classifies
trials as a whole and is not suitable for a continuous feedback.
This issue is addressed in the next section.

D. Continuous feedback classifier

One legitimate question is to know whether the procedure
and features we used could be translated into a “feedback”
algorithm which would allow to continuously control the
cursor movement on the screen and to use the final position
of the cursor for classification.

We tried to build such an algorithm based on the same
principles we used for the classifier described above. The dif-
ference with the previous classifier was that the new classifier
should be able to discriminate the intention of moving up from
the intention of moving down from short time windows in
order to give continuous feedback. For this reason we divided
the period [0.75 s, 3 s] into 8 subintervals Ik of width 0.5 s with
an overlap of 0.25 s. For each of these subintervals the same
features were used as before, i.e., Fourier power coefficients
for CSP signals in the relevant frequency bands.

To do this we just collected all the subintervals of the classes
top and bottom as separate training examples (each labeled
with the corresponding target class) and trained a Fisher linear
discriminant f on these.

Then we used the output of this classifier (a real number)
to represent the movement of the cursor on the screen. To
avoid extreme values this output was thresholded (by threshold
values -3 and 3 which were determined empirically in order to
minimize the cross-validation error on the training set); then
the position of the “virtual cursor” on the screen at the end
of a trial is just the sum of these thresholded classifier values:
pend =

∑
k
t(f(Ik)) where t is the threshold function t(x) = 3

for x > 3, t(x) = −3 for x < −3 and t(x) = x elsewhere.
Finally, to test this procedure we had to translate back this
final position into the initial classification task; for this we
chose three cut values c1 < c2 < c3 such that, if pend < c1,
then the class bottom is predicted; if c1 ≤ pend < c2 the class
down is predicted, etc.

We emphasize that for this method
• To build the classifier f , only the information of the

training classes top and bottom is used; the other training
classes are only used to determine the best cut values ci

for each subject.
• The temporal information available in the global classifier

is lost, since all subintervals are treated equally.
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• The cut values ci are different for each subject, but could
be normalized to arbitrary values if we used instead an
affine rescaling of the classifier output for each subject.

These handicaps notwithstanding, the overall test misclas-
sification error only raised by 4 %. This shows that some
information was lost in the process, but that the continuous
feedback procedure is nevertheless practically viable – al-
though ultimately such a feedback algorithm would have to
be tested with a new set of experiments on the subjects.

E. What we did expect

Of course we hope that our spatial filters are capable of
capturing the relevant dynamics of the subject’s brain state
more robustly and allows a better discrimination of the two
controlling brain states. On the other hand this does not imply
that the classification accuracy on the given data set will be
better compared to the original feedback. The strategy of the
subject was directly coupled to the original feedback. It had to
include counterbalancing possible shortcomings of the original
feedback. But this counterbalancing is counterproductive in
the off-line analysis of those feedback sessions with different
algorithms that have other (or less) shortcomings. This means
that an algorithm which is better in extracting the subject’s
intent from the EEG compared to the original one possibly
performs not better or even worse on the test set.

Another question is how the process of learning strategies
to produce suitable brain states would be affected when using
our approach. The main issue here is that the spatial filters
we are using are more specific. The consequences could be
twofold: It could either be that the learning process of the
subject is impaired because s/he is confined to the specific
patterns as extracted from the initial training period. On the
other hand it could be helpful that the spatial filters are
tailored to the subject’s brain signals, releasing the subject
from the need of adapting to a predefined feedback control. To
handle the anticipated possible problem, the CSPs should be
recalculated quite regularly from the most actual data during
the initial sessions. Even using the conventional method in
the very beginning might be preferable. The performance in
real environment of our algorithm will stay an open question
until it is implemented in a BCI system and several feedback
experiments have been conducted and evaluated.

F. Results on the test dataset

Table I gives the test classification results of our clas-
sification methods. The trial-wise classifier, cf. Sec. III-C,
achieved the best results among the contestants of the BCI
Competition 2003 for this data set, see [13], [4]. While the
results averaged over all three subjects gives a performance
slightly worse than the original online prediction algorithm, it
is interesting to note that this is actually mainly due to Subject
B, where our method compares poorly to the original one. By
contrast, for Subject C we observe a clear improvement over
the original method. (For Subject A, results are almost the
same, actually slightly better for our method). This shows, if
anything, that the two methods exhibit important differences:
the next step would be to understand why a method is

TABLE I
CLASSIFICATION RESULTS FOR THREE SUBJECTS FROM CLOSED-LOOP

BCI EXPERIMENTS. THE METHODS WERE TUNED AND TRAINED ON A

TRAINING DATA SET AND EVALUATED ON A FIXED TEST DATA SET.

Subject Original online CSP-based classifier CSP-based classifier
feedback (trial-wise classifier) (continuous classifier)

A 26.6 % 25.5 % 29.6 %
B 22.8 % 34.0 % 35.0 %
C 31.0 % 25.3 % 29.0 %

mean 26.9 % 28.2 % 31.2 %

better on a given subject than another, possibly to combine
their respective capabilities for increased performance. One
important issue here seems to be the non-stationarity of the
EEG. In consequence, some parameters of our method should
probably be updated online, as was the case for the original
prediction method. For example, in the analysis of the results
of the continuous classifier we noticed that the cut values ci

estimated on the training set were not optimal on the test set.
An additional online update for these values would probably
lead to a significant increase in performance. The failure of
our method in subject B might also be caused by a shift of
the spatial distribution of the µ rhythm which could distort
our CSP channels.

IV. CONCLUSION

We presented our approach to the classification analysis
of data set IIa from the BCI Competition 2003 ([3], [4]).
Since multi-channel EEG was available and brain states are
discriminated by rhythmic features, a common spatial pattern
analysis seemed promising. In order to make such an approach
work for this data set some thoughts were necessary. Although
being primarily a four class problem the discrimination of
two opposed brain states (cursor up vs. cursor down) is a
sufficient basic ingredient. In contrast to the original CSP
application in BCI context (left vs. right hand imagery) here
the role of the classes was asymmetric (i.e. maximizing the
variance for one class while minimizing variance for the other
class resulted in significant CSPs, but not vice-versa – and
the order was subject-dependent). To catch the intent of the
user more robustly CSPs we calculated separately for the µ

and for the β rhythm. For competition purpose a method was
chosen that used the CSP filtered signals to classify trials
was a whole. Additionally we presented an approach that
allows to calculate a continuous feedback signal, while the
classification of a trial depends only on the position of the
cursor when it arrives at the right side of the screen. While
the first approach reaches somewhat better results in terms
of classification error, the latter approach seems to be more
appropriate for implementation in a BCI feedback system.
A line for improvement is to incorporate strategies for a
continuous adaptation of the feedback algorithm to account
for the non-stationary characteristics of the EEG. While this
is straight forward for the thresholds between the classes, the
development of an adaptive version of the CSP algorithm is
subject of present research in our team.



104 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING

ACKNOWLEDGMENT

The authors would like to thank Guido Dornhege for helpful
discussions and two anonymous reviewers for their suggestions
which helped to improve the quality of this paper.

REFERENCES

[1] J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H.
Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson, and
T. M. Vaughan, “Brain-computer interface technology: A review of the
first international meeting,” IEEE Trans. Rehab. Eng., vol. 8, no. 2, pp.
164–173, 2000.

[2] J. R. Wolpaw and D. J. McFarland, “Multichannel EEG-based brain-
computer communication,” Electroencephalogr. Clin. Neurophysiol.,
vol. 90, pp. 444–449, 1994.

[3] B. Blankertz, “BCI competition 2003 (web page).” [Online]. Available:
http://ida.first.fhg.de/projects/bci/competition/

[4] B. Blankertz, K.-R. Müller, G. Curio, T. M. Vaughan, G. Schalk,
J. R. Wolpaw, A. Schlögl, C. Neuper, G. Pfurtscheller, T. Hinterberger,
M. Schröder, and N. Birbaumer, “The BCI competition 2003: Progress
and perspectives in detection and discrimination of EEG single trials,”
IEEE Trans. Biomed. Eng., 2004, to appear.

[5] D. J. McFarland, L. M. McCane, S. V. David, and J. R. Wolpaw, “Spatial
filter selection for EEG-based communication,” Electroencephalogr.
Clin. Neurophysiol., vol. 103, pp. 386–394, 1997.

[6] H. Sheikh, D. J. McFarland, W. A. Sarnacki, and J. R. Wol-
paw, “Electroencephalographic(EEG)-based communication: EEG con-
trol versus system performance in humans,” Neurosci. Lett., vol. 345,
no. 2, pp. 89–92, 2003.

[7] K. Fukunaga, Introduction to statistical pattern recognition, 2nd ed.
Boston: Academic Press, 1990.

[8] Z. J. Koles and A. C. K. Soong, “EEG source localization: implementing
the spatio-temporal decomposition approach,” Electroencephalogr. Clin.
Neurophysiol., vol. 107, pp. 343–352, 1998.

[9] H. Ramoser, J. Müller-Gerking, and G. Pfurtscheller, “Optimal spatial
filtering of single trial EEG during imagined hand movement,” IEEE
Trans. Rehab. Eng., vol. 8, no. 4, pp. 441–446, 2000.

[10] G. Dornhege, B. Blankertz, G. Curio, and K.-R. Müller, “Boosting
bit rates in non-invasive EEG single-trial classifications by feature
combination and multi-class paradigms,” IEEE Trans. Biomed. Eng.,
2004, in revision.

[11] ——, “Increase information transfer rates in BCI by CSP extension to
multi-class,” in Advances in Neural Inf. Proc. Systems (NIPS 03), vol. 16,
2004, to appear.

[12] G. Pfurtscheller and F. H. L. da Silva, “Event-related EEG/MEG
synchronization and desynchronization: basic principles,” Clin. Neuro-
physiol., vol. 110, no. 11, pp. 1842–1857, Nov 1999.

[13] B. Blankertz, “BCI competition 2003 results (web page).” [Online].
Available: http://ida.first.fhg.de/projects/bci/competition/results/


