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1 Introduction

The human factor plays the key role for safety in many industrial and civil every-day operations in our
technologized world. Human failure is more likely to cause accidents than technical failure, e.g. in the
dangerous job of tugboat captains. Here, cognitive workload is crucial, as its excess is a main cause
of dangerous situations and accidents while being highly subject and situation dependent. However,
reliable subjective ratings are hard to obtain while objective ratings of task difficulty remain a necessity
for training as well as control, port and operation design – leading to a very high general interest in online
cognitive workload indicators.

2 Contributions

Within this project we have conducted a simulator pilot study involving 10 professional tugboat captains
and a variety of physiological measurements. We were involved in the design of the study, while we also
played a key role in the execution of the experiments. We have linked the different measurements with
the simulator data to enable a thorough analysis of interactions and influences. Within the experiments,
we have supplied and set up most of the measurement equipment, conducted the technical maintenance
and supervision of the physiological measurements as well as the generation and operation of a special
side-task inducing cognitive workload. Also, we have been in charge of the whole data collection. In the
data analysis, our main part was the extraction of the relevant markers for the different experimental
conditions and the EEG analysis.

On the physiological side we recorded a 64channel high quality Electroencephalogram (EEG) with
active electrolyte gel contacted electrodes in an extended 10-10 position set. With the same amplifier
system we recorded an Electrocardiogram (ECG) of the heart in a standard 3 electrode montage optimized
for R-peak detection. Also, the breathing activity of the subjects was assessed with a special piezo-driven
belt.

2.1 Workpackages

All workpackages mentioned in the contract have been complied with:

• Concept for concurrent EEG acquisition in a manoeuvring simulator [preparation of pilot study
I; in discussions with partners]

• Elaboration of an experimental design in consideration of EEG acquisition and validation [prepa-
ration of pilot studies I and II; in discussion with partners]

• Detailed analysis of the neural correlates of workload changes [see this report]

• Development of a tailored workload classifier and evaluation of its performance [see this report]

as well as three visits to MARIN:

• Visit 1: discuss experimental setup in manoevring simulator; 1 day [done on 24.04]

• Visit 2: implement EEG acquisition and supervise execution of first experiments; 4-5 days [done
28.06. - 03.07.: pilot study I]

• Visit 3: continuation of experiments, if required with a change of the experimental paradigm; 3-4
days [done 11.09. - 18.09.: pilot study II]

3 Project Description

3.1 Background

In the maritime world, as in many other workplaces, working memory, the ability to process information
and to take decision are crucial. The quantification of cognitive workload is a measure to study these
aspects. The insight can shed light onto the limitations posed by the human factor and point out how to
improve equipment, conditions or the training for dealing with challenging tasks. While there exists no
generally accepted definition of cognitive workload, there is a large agreement that it encompasses the
two concepts of activation and resources or capacity.
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In the present study, as we break new ground in the study of workload in the maritime world, we
concentrated as a first step just on the net effect. A finer grained analysis including a distinction of
different underlying factors, which can be expected to lead to enhanced system performance in the long
run, is left as a topic for future research.

3.2 Neurophysilogical Correlates of Cognitive Workload

Cognitive workload is reflected in different components of brain activity. In view of the present target
application, modulations of event-related potentials due to workload ([18, 19, 25]) are not relevant, since
there are no controlled and continuously repeated stimuli. Therefore, we concentrate on workload-induced
modulations of spontaneous brain activity.

The power of oscillatory brain activity in the theta frequency range (4 to 7 Hz) in frontal brain regions
have been found to positively correlate with the level of workload, see e.g. [11, 13,29].

With respect to the more prominent alpha frequency band, most studies report a negative correla-
tion of cognitive workload and alpha power at parito-occipital scalp locations, see e.g. [10,13]. However,
these studies used tasks in the visual modality to induce workload, such that one can only derive the
implication of alpha reduction for workload in visual resources. In general, the functional role of alpha
band oscillations is not yet conclusive. For a memory task in the auditory domain, [12] reports a modu-
lation of theta osciallations only, but no modulations of the alpha rhythm. Some studies using auditory
stimulation even found an increase of alpha activity with increasing workload ([8, 17,20,22]). A possible
interpretation is provided by the hypothesis of functional inhibition, which postulates that strong alpha
activity reflects active inhibition of task-irrelevant processes ([16]): when the critical processsing load is
in the non-visual, the visual areas are actively deactivated.

The idea of build EEG-based workload monitoring systems was presented, e.g. in [9,10,23,26,27]. On
online system was built by our group and validate during an actual driving task on a highway ([3, 17]).

3.3 Performed Experimental Studies

As foreseen in the project proposal, two pilot studies have been conducted. The first study was conducted
from June 30th to July 3rd with four participants. It was an important experience and the evaluation
of this dataset underlined the viability of neurophysiological workload measurements in a manoevering
simulator. The analyses have been circulated and discussed bwteen the project partners and resulted
in small but important changes in the experimental setting for the follow-up study. Here, we will only
report the results of the revised, second study which included ten participants.

3.4 Experimental Design

In a 10-subject simulator study, we recorded electroencephalographic data from a realistic tugboat sce-
nario with professional captains (subj. 8 excl.: sickness). The experiment consisted of 3 different scenarios
(approx. 40 mins each), where scenario 1 and 3 were identical, see Fig. 1.

While in scenario 1 and 3, the cognitive workload was modulated by the sailing task itself, we increased
it in scenario 2 by an additional task (2-back task [15]) and kept sailing constant. The blocks were
subdivided into epochs of 1 min for classification for all conditions.

3.4.1 Scenario 1&3: Bow-To-Bow

In this scenario the focus was to keep the experimental conditions as naturalistic as possible while still
being able to modulate the workload induced on the captain. Therefore, 3 conditions were generated
with different tasks and different weather conditions.

Condition 1: Free Sailing Condition: low workload : The captain was instructed to follow a large container
ship astern while the weather was manipulated to have no extra effect on the workload.

Condition 2: Connecting Condition: high1 workload : After moving to the front of the vessel the tugboat
captain gets the instruction to get ready for bow-to-bow connection while the weather conditions get
harsh. He is told to wait for connection for 5 mins.

Condition 3: Pulling Condition: high2 workload : After the rope is connected, a constant tow force and
line length is instructed while the weather stays harsh.
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Figure 1: Experimental Design

Figure 2: Experimental Design - Bow-To-Bow Scenario

3.4.2 Scenario 2: n-Back

The n-back task is commonly used in neuroscientific research as a manipulation tool for cognitive work-
load, where n is typically chosen between 0 and 3 in order to induce different levels of workload. We used
this to have a condition comparable to common research and to see how much our bow-to-bow scenario
corresponds to the neural patterns of this commonly known task. We used a auditory 2-back task, where
the subject had to follow a stream of spoken numbers. If the last number heard corresponded with the
digit 2 back, he had to press a button. The digits 1-9 were used with 3 s interleave randomly (75%)
and forced 2-back repetition (25%) to get a reasonable amount of repetitions. The 2-back was played
auditorily to keep a realistic behavioral scheme of the captain. There were 2 conditions, 4 mins each:

Condition 1: Free Sailing Condition low workload : In this condition, the same low workload task of the
bow-to-bow Scenario is induced for comparison.

Condition 2: Free Sailing with 2-Back Condition high workload : The 2-back task was used additionally
to the Free Sailing to induce a higher workload while keeping the primary task constant.

Both conditions were repeated 5 times resulting in a total duration of 40 minutes for the whole phase.
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Figure 3: Experimental Design - n-Back Scenario

4 EEG-Analysis

4.1 Dealing with Artifacts

A preliminary analysis of the spatio-spectral content of the data showed that the EEG of some participants
is heavily affected by artifacts. This was expected due to the participants being allowed to act naturally.
Head and trunk movements were required for the sailing tasks, as the simulator provided a 360◦ projection.

First the automatic artifact removal method MARA ([31]) has been employed, that gives good results
in usual EEG datasets. The method is based on a decomposition of the multivariate EEG by the use
of an Independent Component Analysis (ICA; [1, 5, 14]). The components are classified into artifacts
and neuronal components. Then, the cleaned EEG signals are obtained by projected only the neuronal
components back into the sensor space. The classifier that distinguishes between artifactual and neuronal
components was trained on a large data based of EEG datasets for which the ICA decomposition was
manually annotated. For datasets that contain artifacts unlike those ones contained in the training data
base, some of the artifactual components may go undetected. This seems to be the case for the dataset
at hand.

Therefore, we went the tedious way of annotating all ICA components (ICs) manually. This decision
between artifactual and neuronal components is based on the following plots: the propagation pattern that
corresponds to the IC, the time series of the IC and its power spectral density. The number of components
that are to be checked equals the number of EEG channels, i.e. 32 for the first three participants and 64
for the remaining seven. Examples of those plots are given in Figures 4, 5 and 6.

4.2 Results

The grand average (i.e., average across participants) of the spectral analysis is shown in Figure 7 (2-
back task) and Figure 8 (bow-to-bow task). Corresponding plots for single participants are provided in
appendices A and B. When comparing the results for individual participants, it becomes clear that the
grand average is only of limited use. The effect of the workload conditions seen in the alpha band varies
with respect to the specific frequency range (lower or higher alpha).

The most informative plot are the scalp maps of the r2 scaled difference of high minus low workload
condition, which are at the bottom of the figure. The four maps correspond to the four intervals that are
shaded in the plot of the power spectral density. There is one for the theta range, two for alpha and one
for beta.

In the grand average for the auditory 2-back task (Fig. 7, we observe a weak fronto-central increase
in the theta band. However, we expect that this is not the typical theta effect, since its location is not
as frontal as expected and the difference gets stronger in the frequency range below the theta band. (A
typical frontal increase of theta activity can be seen for participant #10 in the bow-to-bow condition,
see the last plot in Appendix B.) In the alpha range at 11 Hz, the power increases for the workload
condition at parietal site (focus at Pz). This effect is opposite to generally assumed one of alpha decrease,
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Figure 4: Inspection of a component obtained by ICA (neuronal component). The pattern (upper right
subplot) gives an idea of where the activity originates from, in this case it is presumably the motor area
corresponding to the left arm. The pattern shows a smooth dipolar structure. The power spectral density
graph (upper left subplot) shows the typical 1/f shape with enhanced power around 9.5 Hz, which is the
typical frequency of the sensorimotor rhythm. The time course does not display obvious irregularities.
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Figure 5: Inspection of a component obtained by ICA (artifactual component). Pattern, spectrum and
time course do not look like neuronal activity: the pattern is very focal, the spectrum does not follow
the general 1/f shape, has least power in the 10 Hz range and strong power in high frequencies and the
time course contains a burst of high frequencies.
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Figure 6: Inspection of a component obtained by ICA (neuronal component). Pattern, spectrum and
time course look like neuronal activity: The pattern has a smooth monopolar structure and the spectrum
follows the 1/f shape with a small increase in the theta frqeuency range.

which is based on studies with visual tasks but consistent with some studies employing auditory tasks,
see Sec. 3.2. It is worth to notice that the frequency that shows the pronounced difference between the
workload condition does not coincide with the alpha peak in the spectrum. In the plots for the single
participants, this increase in alpha activity is visible in 6 out of 8 participants, while one (VP #3) shows
the opposite effect (parieto-occipital alpha decrease) and the last one (VP #10) displays no clear effect
(alpha decrease with wide spread parietal extend).

In the grand average of bow-to-bow scenario, the differences are much weaker (note the different scale).
The lower alpha range shows an increase in power for high workload which looks topographically similar
to the effect found in the 2-back task. However, here the frequency showing the difference is below 10 Hz,
which suggest that a different neural mechanism is observed here. In the plots for the single participants,
this alpha modulation is visible for 4 out of 8.
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Figure 7: Grand average of the spectral analysis of the 2-back task.
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Figure 8: Grand average of the spectral analysis of the bow-to-bow task.
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5 Classification Analysis

5.1 Aim and Approach

We have seen in the spectral analysis, that the data is strongly affected by artifacts. Apart from noise of
the technical devices, there are artifacts from muscle activity (seen in high frequencies, mostly at outer
temporal and occipital electrodes) as well as from eye movements (seen in low frequencies at very frontal
channels). Furthermore, there may be motion artifacts due to the motion of the electrode cables induces
by head and trunk movements.

The muscular and ocular artifacts are indicative of the workload condition for a number of participants
and could in principle be used for the workload classifier. However, the goal of this analysis was to estimate
the contribution of genuine brain activity to the estimation of the workload level. We did not design a
classification method that specifically uses those artifacts. Still, we evaluated an approach that works on
uncorrected data, we can be expected to exploit workload-specific artifacts to some degree, and methods
including artifact corrected data which work presumably on brain activity only.

5.2 Preprocessing, Artifact Reduction and Feature Extraction

We used 1 Hz high-pass filtering alone (R), in combination with MARA [31] (C), an Independent Compo-
nent Analysis (ICA, [1,5,14]) based automatic artifact reduction, as well as manual ICA artifact reduction
(CM), as mentioned above. Then, we built different spectral band power based features based on windows
of 60 s: (a) 1 Hz bins from 1–20 Hz, (b) 1 Hz bins from 4–12 Hz, c sum over alpha (8–12 Hz) and theta
band (4–7 Hz) bins, and (d) sum over alpha (8–12 Hz), theta band (4–7 Hz) and beta band (13–20 Hz).
In addition, we performed Common Spatial Pattern analysis (CSP; [7], for application in BCI context
see [4, 24, 28]) in different band combinations [2] with the logarithm of the variances as features [4]. We
evaluated the different classification designs within phases as block-wise cross-validations (CV; see [21]
conerning the issue with validating blockwise data) as well as between phases to test for generalization.
The CSP analysis was performed on the training set only and transferred to the test set, cf. [21].

5.3 Classification

The classifier was based on regularized linear discriminant analysis ([6]) with automatic shrinkage of the
covariance matrix ([30]) after the different preprocessing steps.

5.4 Results

The results show a high variability in performance between participants. Classification works best in the
2-back scenario (phase 2), but also the intra-phase classification in the more complex bow-to-bow scenario
(phases 1 and 3) works quite well with CV-loss below 25 % for methods R and C. The transfer of the
classifier between the different kinds of tasks (2-back and bow-to-bow) yielded results around the chance
level, while the transfer of classifiers within the bow-to-bow scenario, i.e. between phases 1 and 3, works
almost as good as the respective within phase classification (compare upper and lower subplot of columns
1 and 3 of Figure 9).
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Figure 9: Classification Results: class wise normalized loss. The average classification result is indicated
by the light blue marker, while the results for individual participants are shown as colored circles. Methods
are labelled by capital letters for preprocessing and lower-case for different combinations of frequency
bands: R only high-pass (1Hz), C MARA artifact removal, CM manual ICA based artifact removal: a
1 Hz bins from 1–20 Hz, b 1 Hz bins from 4–12 Hz, c sum over alpha (8–12 Hz) and theta band (4–7 Hz)
and d sum over alpha (8–12 Hz), theta band (4–7 Hz) and beta band (13–20 Hz). CSP common spatial
pattern algorithm: CSPa alpha and theta band, CSPb alpha, beta and theta band and CSPc alpha,
beta, gamma and theta band.

6 Discussion

The results of the 2-back scenario already show the complexity of a physiological index of cognitive
workload, when the task is not performed is a very constrained laboratory setting, but embedded in
a more realistic and complex scenario. The expected increase of the frontal theta oscillation was not
observed, and the power in the parietal alpha did not decrease as found in most workload studies, but
it showed the contrary effect. The alpha effect is consistent with the literature on non-visual tasks.
The common hypothesis for this ambiguity in the alpha rhythm is that the task-irrelevant visual brain
region is actively inhibited in order to focus resources to the relevant non-visual processing tasks. One
participant that showed a parieto-occipital alpha decrease might have had a visual strategy to memorize
the sequence of numbers, albeit they have been presented auditorily.

Classification of workload levels in the complex bow-to-bow scenario is in general successful. Trans-
ferring the classifier between the two phases 1 and 3 does not degrade the performance appreciably. The
fact that classification in the realistic bow-to-bow task worked less good compared to the 2-back task
requires consideration. As found in the literature on electrophysiological correlates of workload, there
are two opposing effect concerning the modulation of the alpha rhythm. Tasks in the visual modality are
found to decrease alpha activity, while workload in non-vusial modalities were partly found to increase
alpha activity (as in our 2-back paradigm). In the complex bow-to-bow scenario, these effects may be
in conflict. Retrieving expertise about the maneuvering can be expected to be mainly non-visual. Nev-
ertheless, the control of the boat does not allow a rigorous inhibition of visual processing (that would
be reflected by strong alpha increase) as it requires synchronized visual processing, in particular as the
weather conditions were challenging in during the high workload condition. This conflict can be assume
to leading to a much weaker effect of cognitive workload on alpha power, an issue that would be well
worth deeper investigation.

Another interesting point in the view of applicability is the fact that the complex concept work-
load encompasses different factors, two of which are activation and resources, as dicsussed in Sec. 3.1.
Therefore, a high output of the workload monitor could indicate a strong activation in the sense of an
effective focussing of the task at hand (thereby inhibiting task-irrelevant processing). Accordingly, an
interpretation of the participant being at the limit of her/his resources might not be adequat.
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7 Outlook

As a continuation of this project, we will investigate the descrimination of workload levels based on
respiration data as well as the combination of signals from peripheral physiology and EEG. This will
include respiration, heart rate (data provided by MARIN) and skin conductance (if data is provided by
Phillips).

For the critical assessment of the current study on workload in a maritime manoevering task and for
the interpretation in the view of applicability, we highlight the following points:

• There is a high variability in workload detection between participants. This has to be kept in mind
for the target application.

• The current analysis operated on windows of 60 s duration. With shorter windows, the performance
can be expected to degrade. This means that the workload monitor has some delay in the response.

• Transfer from the 2-back to the bow-to-bow task was not possible. This means that the workload
monitor needs to be calibrated with an actual maneuvering task in the simulator.

• The transfer between phases 1 and 3 (both bow-to-bow tasks) was well possible. Therefore, the
workload monitor can be expected to be stable over some hours. However, this study did not
investigate the transfer between sessions performed at different days. From experience with other
BCI application, it can be assumed that at least some kind of recalibration is required.

As points of further investigation in future projects, we envision the following:

• How meaningful is the graded output of the workload indicator?

• Investigate why theta increase was not found in the 2-back task. Is it due to the ‘background’
manoevering task?

• How is the alpha rhythm affected by cognitive workload in a dual visual and auditory task – do the
effects found in separate studies of decreased in increase alpha power cancel out? Do we find other
effects?

• Is the transfer of a workload classifier possible between days? What kind of recalibration is required
to keep classification performance at a good level?

• Can we disentangle the contribution of activation and resources in the complex concept of cognitive
workload.
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A Neural Correlates of Workload in Selected Participants – 2-Back Task
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B Neural Correlates of Workload in Selected Participants – Bow-to-Bow
Task
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