
The Constant Q Transform
[Benjamin Blankertz]

1 Introduction

The constant Q transform as introduced in [Brown, 1991] is very close related
to the Fourier transform. Like the Fourier transform a constant Q transform
is a bank of filters, but in contrast to the former it has geometrically spaced

center frequencies fk = f0 · 2
k
b (k = 0, . . .), where b dictates the number

of filters per octave. To make the filter domains adjectant one chooses the
bandwidth of the k-th filter as ∆cq

k = fk+1 − fk = fk(2
1
b − 1). This yields a

constant ratio of frequency to resolutionQ = fk
∆cq
k

= (2
1
b−1)−1. What makes

the constant Q transform so useful is that by an appropriate choice for f0

(minimal center frequency) and b the center frequencies directly correspond
to musical notes. For instance choosing b = 12 and f0 as the frequency of
midinote 0 makes the k-th cq-bin correspond the midinote number k.

Another nice feature of the constant Q transform is its increasing time
resolution towards higher frequencies. This resembles the situation in our
auditory system. It is not only the digital computer that needs more time
to perceive the frequency of a low tone but also our auditory sense. This is
related to music usually being less agitated in the lower registers.

2 Deriving Filter Parameters for the Constant Q
Transform

To derive the calculation of the constant Q transform of some sequence x
we begin with an inspection of the familiar formula of a Fourier filter at z∑

n<N

x[n] e−2πinz/N(1)

Each component of the constant Q transform, in the sequel called cq-bin,
will be calculated as such a filter, but suitable values for z and window
length N have to be found in order to match the properties discussed above.
The bandwidth of the filter (1) is ∆ft

z = fs/N (fs denotes the sampling
rate) independently of z. Thus the desired bandwidth ∆

cq
k = fk/Q can be

realized by choosing a window of length Nk = fs
∆cq
k

= Q fs
fk

. The frequency to

resolution ratio of the filter in (1) is fz
∆ft
z

= z. To achieve a constant value Q

1

for the frequency to resolution ratio of each cq-bin one has to select z := Q.
Thus for integer values Q the k-th cq-bin is the Q-th DFT-bin with window
length Q fs

fk
.

Summerizing we get the following recipe for the calculation of a con-
stant Q transform: First choose minimal frequency f0 and the number of
bins per octave b according to the requirements of the application. The max-
imal frequency fmax only affects the number of cq-bins to be calculated1:

K := pb · log2(
fmax

f0
)q(2)

Q := (2
1
b − 1)−1 and for k < K set(3)

Nk := pQfs
fk
q(4)

xcq[k] :=
1

Nk

∑
n<Nk

x[n] wNk[n] e−2πinQ/Nk(5)

To reduce spectral leakage (cf. [Harris, 1978]), it is advisable to use the
filter in conjunction with some window function: 〈wN [n] : n < N〉 is some
analysis window of length N . We followed Judith Brown by using Hamming
windows.

3 Direct Implementation

For comparison first the usual FT-algorithm is given, not in its compact
form ft= (x .* win) * exp(-2*pi*i*(0:N-1)’*(0:N-1)/N), but with a
loop.

function ft= slowFT(x, N)

for k=0:N-1;

ft(k+1)= x(1:N) * (hamming(N) .* exp(-2*pi*i*k*(0:N-1)’/N)) / N;

end

And here is the direct implementation of the constant Q transform.

function cq= slowQ(x, minFreq, maxFreq, bins, fs)

Q= 1/(2∧(1/bins)-1);
for k=1:ceil(bins*log2(maxFreq/minFreq));

N= round(Q*fs/(minFreq*2∧((k-1)/bins)));
cq(k)= x(1:N) * (hamming(N) .* exp(-2*pi*i*Q*(0:N-1)’/N)) / N;

end

1pxq denotes the least interger greater than or equal to x.

2

4 An Efficient Algorithm

Since the calculation of the constant Q transform according to the formula
(5) is very time consuming, an efficient algorithm is highly desirable. Using
matrix multiplication the constant Q transform of a row vector x of length
N (N ≥ Nk for all k < K) is

xcq = x · T ∗(6)

where T ∗ is the complex conjugate of the temporal kernel2 T = (Tnk)n<N,k<K

Tnk :=

{
1
Nk

wNk[n] e2πinQ/Nk if n < Nk

0 otherwise
(7)

Since the temporal kernel is independent of the input signal x one can speed
up successive constant Q transforms by precalculating T ∗. But this is very
memory consuming and since there are many non vanishing elements in T

the calculation of the matrix product x · T ∗ still takes quite a while.
Luckily Judith Brown and Miller Puckette came up with a very clever idea
for improving the calculation [Brown and Puckette, 1992]. The idea is to
carry out the matrix multiplication in the spectral domain. Since the win-
dowed complex exponentials of the temporal kernel have a DFT that van-
ishes almost everywhere except for the immediate vicinity of the correspond-
ing frequency the spectral kernel

S := DFT(T) (one dimensional DFTs applied columnwise)(8)

is a sparse matrix (after eliminating components below some threshold
value). This fact can be exploited for the calculation of xcq owing to the
identity∑

n<N

x[n] y[n]∗ =
1

N

∑
n<N

xft[n] yft[n]∗(9)

where x and y are sequences of length N and xft, yft denote their unnor-
malized discrete Fourier transform. Applying this identity to the formula of
constant Q transform (5) using definitions (7) and (8) yields

xcq[k] =
1

N

∑
n<N

xft[n] S∗nk

2In (7) we center the filter domains on the left for the ease of notation. Right-centering
is more appropriate for real-time applications. Middle-centering has the advantage of
making the spectral kernel (8) real.

3

or equivalently in matrix notation

xcq =
1

N
xft · S∗.(10)

Due to the sparseness of S the calculation of the product xft · S∗ involves
essentially less multiplications than x · T ∗.
The Fourier transforms that arise in the efficient algorithm should of course
be calculated using FFTs. To this end N is chosen as the lowest power
of 2 greater than or equal to N0 (which is the maximum of all Nk). The
calculation of the spectral kernel is quite expensive, but having done this
once all succeeding constant Q transforms are performed much faster.

5 Implementation of the Efficient Algorithm

function sparKernel= sparseKernel(minFreq, maxFreq, bins, fs, thresh)

if nargin<5 thresh= 0.0054; end % for Hamming window

Q= 1/(2∧(1/bins)-1); (3)

K= ceil(bins * log2(maxFreq/minFreq)); (2)

fftLen= 2∧nextpow2(ceil(Q*fs/minFreq));

tempKernel= zeros(fftLen, 1);

sparKernel= [];

for k= K:-1:1;

len= ceil(Q * fs / (minFreq*2∧((k-1)/bins))); (4)

tempKernel(1:len)= ...

hamming(len)/len .* exp(2*pi*i*Q*(0:len-1)’/len); (7)

specKernel= fft(tempKernel); (8)

specKernel(find(abs(specKernel)<=thresh))= 0;

sparKernel= sparse([specKernel sparKernel]);

end

sparKernel= conj(sparKernel) / fftLen; (10).1

function cq= constQ(x, sparKernel) % x must be a row vector

cq= fft(x,size(sparKernel,1)) * sparKernel; (10).2

A matlab implementation of the efficient algorithm for the constant Q
transform [Brown and Puckette, 1992] coded by Benjamin Blankertz. The
sparseKernel has only to be calculated once. This might take some seconds.
After that, constant Q transforms of any row vector x can be done very

4

efficiently by calling constQ. The function hamming is included in the dsp-
toolbox. It returns the Hamming window of the given length:

hamming(len)= 0.46-0.54*cos(2*pi*(0:len-1)’/len).

References

Judith C. Brown, Calculation of a constant Q spectral transform, J. Acoust.
Soc. Am., 89(1):425–434, 1991.

Judith C. Brown and Miller S. Puckette, An efficient algorithm for the cal-
culation of a constant Q transform, J. Acoust. Soc. Am., 92(5):2698–2701,
1992.

F. J. Harris, On the Use of Windows for Harmonic Analysis with Discrete
Fourier Transform, in: Proc. IEEE, Bd. 66, pp. 51–83, 1978.

5

